Electric conduction in liquids

Storyboard

In a liquid it is ions and not electrons that lead to current conduction. In this case the resistance is given by the mobility of the ions within the liquid and the resistance must be calculated based on the concentrations of all the components.

>Model

ID:(1509, 0)



Electric conduction in liquids

Description

In a liquid it is ions and not electrons that lead to current conduction. In this case the resistance is given by the mobility of the ions within the liquid and the resistance must be calculated based on the concentrations of all the components.

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$Q_i$
Q_i
Charge of the ion i
C
$c_i$
c_i
Concentration of ions i
mol/m^3
$G$
G
Conductance
S
$\kappa_e$
kappa_e
Conductivity
1/Ohm m
$\kappa_i$
kappa_i
Conductivity ions of type i
1/Ohm m
$L$
L
Conductor length
m
$m_i$
m_i
Mass of the ion i
kg
$\Lambda_i$
Lambda_i
Molar conductivity ions of type i
m^2/Ohm mol
$R$
R
Resistance
Ohm
$\rho_e$
rho_e
Resistivity
Ohm m
$S$
S
Section of Conductors
m^2
$\tau_i$
tau_i
Time between collisions ion i
s

Calculations


First, select the equation:   to ,  then, select the variable:   to 

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

 Variable   Given   Calculate   Target :   Equation   To be used



Equations


Examples

Using the resistivity ($\rho_e$) along with the geometric parameters the conductor length ($L$) and the section of Conductors ($S$), the resistance ($R$) can be defined through the following relationship:

$ R = \rho_e \displaystyle\frac{ L }{ S }$

(ID 3841)

The conductivity ions of type i ($\kappa_i$), in terms of the molar conductivity ions of type i ($\Lambda_i$) and the concentration of ions i ($c_i$), is defined as equal to:

$ \kappa_i = \Lambda_i c_i $

(ID 11818)

The molar conductivity ions of type i ($\Lambda_i$) is defined in terms of the charge of the ion i ($Q_i$), the time between collisions ion i ($\tau_i$), and the mass of the ion i ($m_i$), using the following relationship:

$ \Lambda_i =\displaystyle\frac{ Q_i ^2 \tau_i }{2 m_i } $

(ID 11817)

Como la conductividad es proporcional a la concentraci n de los iones

$ \kappa_i = \Lambda_i c_i $



se puede definir una conductividad total como la suma de las conductividades de los distintos iones. Con la definici n de la conductividad molar

$ \Lambda_i =\displaystyle\frac{ Q_i ^2 \tau_i }{2 m_i } $



se tiene que

$ \kappa_e =\displaystyle\sum_i \Lambda_i c_i $

(ID 3849)

The resistivity ($\rho_e$) is defined as the inverse of the conductivity ($\kappa_e$). This relationship is expressed as:

$ \rho_e =\displaystyle\frac{1}{ \kappa_e } $

(ID 3848)

The conductance ($G$) is defined as the inverse of the resistance ($R$). This relationship is expressed as:

$ G =\displaystyle\frac{1}{ R }$

(ID 3847)


ID:(1509, 0)