Electric conduction in liquids
Storyboard
In a liquid it is ions and not electrons that lead to current conduction. In this case the resistance is given by the mobility of the ions within the liquid and the resistance must be calculated based on the concentrations of all the components.
ID:(1509, 0)
Resistance
Equation
Using the resistivity ($\rho_e$) along with the geometric parameters the conductor length ($L$) and the section of Conductors ($S$), the resistance ($R$) can be defined through the following relationship:
$ R = \rho_e \displaystyle\frac{ L }{ S }$ |
ID:(3841, 0)
Conductivity of each ion
Equation
The conductivity ions of type i ($\kappa_i$), in terms of the molar conductivity ions of type i ($\Lambda_i$) and the concentration of ions i ($c_i$), is defined as equal to:
$ \kappa_i = \Lambda_i c_i $ |
ID:(11818, 0)
Molar conductivity
Equation
The molar conductivity ions of type i ($\Lambda_i$) is defined in terms of the charge of the ion i ($Q_i$), the time between collisions ion i ($\tau_i$), and the mass of the ion i ($m_i$), using the following relationship:
$ \Lambda_i =\displaystyle\frac{ Q_i ^2 \tau_i }{2 m_i } $ |
ID:(11817, 0)
Total conductivity
Equation
Como la conductividad es proporcional a la concentración de los iones
$ \kappa_i = \Lambda_i c_i $ |
se puede definir una conductividad total como la suma de las conductividades de los distintos iones. Con la definición de la conductividad molar
$ \Lambda_i =\displaystyle\frac{ Q_i ^2 \tau_i }{2 m_i } $ |
se tiene que
$ \kappa_e =\displaystyle\sum_i \Lambda_i c_i $ |
None
ID:(3849, 0)
Conductivity
Equation
The resistivity ($\rho_e$) is defined as the inverse of the conductivity ($\kappa_e$). This relationship is expressed as:
$ \rho_e =\displaystyle\frac{1}{ \kappa_e } $ |
ID:(3848, 0)
Conductance
Equation
The conductance ($G$) is defined as the inverse of the resistance ($R$). This relationship is expressed as:
$ G =\displaystyle\frac{1}{ R }$ |
ID:(3847, 0)