Electric conduction in liquids

Storyboard

In a liquid it is ions and not electrons that lead to current conduction. In this case the resistance is given by the mobility of the ions within the liquid and the resistance must be calculated based on the concentrations of all the components.

>Model

ID:(1509, 0)



Resistance

Equation

>Top, >Model


Using the resistivity ($\rho_e$) along with the geometric parameters the conductor length ($L$) and the section of Conductors ($S$), the resistance ($R$) can be defined through the following relationship:

$ R = \rho_e \displaystyle\frac{ L }{ S }$

$L$
Conductor length
$m$
5206
$R$
Resistance
$Ohm$
5485
$\rho_e$
Resistivity
$Ohm m$
5484
$S$
Section of Conductors
$m^2$
5475

ID:(3841, 0)



Conductivity of each ion

Equation

>Top, >Model


The conductivity ions of type i ($\kappa_i$), in terms of the molar conductivity ions of type i ($\Lambda_i$) and the concentration of ions i ($c_i$), is defined as equal to:

$ \kappa_i = \Lambda_i c_i $

$c_i$
Concentration of ions i
$mol/m^3$
8644
$\kappa_i$
Conductivity ions of type i
$1/Ohm m$
8646
$\Lambda_i$
Molar conductivity ions of type i
$m^2/Ohm mol$
8645

ID:(11818, 0)



Molar conductivity

Equation

>Top, >Model


The molar conductivity ions of type i ($\Lambda_i$) is defined in terms of the charge of the ion i ($Q_i$), the time between collisions ion i ($\tau_i$), and the mass of the ion i ($m_i$), using the following relationship:

$ \Lambda_i =\displaystyle\frac{ Q_i ^2 \tau_i }{2 m_i } $

$Q_i$
Charge of the ion i
$C$
8642
$m_i$
Mass of the ion i
$kg$
8643
$\Lambda_i$
Molar conductivity ions of type i
$m^2/Ohm mol$
8645
$\tau_i$
Time between collisions ion i
$s$
8641

ID:(11817, 0)



Total conductivity

Equation

>Top, >Model


Como la conductividad es proporcional a la concentración de los iones

$ \kappa_i = \Lambda_i c_i $



se puede definir una conductividad total como la suma de las conductividades de los distintos iones. Con la definición de la conductividad molar

$ \Lambda_i =\displaystyle\frac{ Q_i ^2 \tau_i }{2 m_i } $



se tiene que

$ \kappa_e =\displaystyle\sum_i \Lambda_i c_i $

$c_i$
Concentration of ions i
$mol/m^3$
8644
$\kappa_e$
Conductivity
$1/Ohm m$
5487
$\Lambda_i$
Molar conductivity ions of type i
$m^2/Ohm mol$
8645

None

ID:(3849, 0)



Conductivity

Equation

>Top, >Model


The resistivity ($\rho_e$) is defined as the inverse of the conductivity ($\kappa_e$). This relationship is expressed as:

$ \rho_e =\displaystyle\frac{1}{ \kappa_e } $

$\kappa_e$
Conductivity
$1/Ohm m$
5487
$\rho_e$
Resistivity
$Ohm m$
5484

ID:(3848, 0)



Conductance

Equation

>Top, >Model


The conductance ($G$) is defined as the inverse of the resistance ($R$). This relationship is expressed as:

$ G =\displaystyle\frac{1}{ R }$

$G$
Conductance
$1/Ohm$
5486
$R$
Resistance
$Ohm$
5485

ID:(3847, 0)