Resistance in parallel and in series

Storyboard

When the resistors are connected in parallel, they are all exposed to the same potential difference which, by Ohm's law, generates different currents. The total current is the sum of the partial currents, so the total resistance is the inverse of the sum of the inverse of the individual resistances.

>Model

ID:(2121, 0)



Mechanisms

Iframe

>Top



Code
Concept

Mechanisms

ID:(16034, 0)



Model

Top

>Top



Parameters

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$R_1$
R_1
Resistance 1
Ohm
$R_2$
R_2
Resistance 2
Ohm
$R_3$
R_3
Resistance 3
Ohm
$R_p$
R_p
Resistance in Parallel
Ohm
$R_s$
R_s
Resistance in Series
Ohm

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$I$
I
Current
A
$I_1$
I_1
Current 1
A
$I_2$
I_2
Current 2
A
$\Delta\varphi_1$
Dphi_1
Difference of potential 1
V
$\Delta\varphi_3$
Dphi_3
Difference of potential 3
V
$\Delta\varphi$
Dphi
Potential difference
V

Calculations


First, select the equation: to , then, select the variable: to

Calculations

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

Variable Given Calculate Target : Equation To be used




Equations

#
Equation

$ \Delta\varphi = \Delta\varphi_1 + \Delta\varphi_3 $

Dphi = Dphi_1 + Dphi_2


$ \Delta\varphi_1 = R_p I $

Dphi = R * I


$ \Delta\varphi_1 = R_1 I_1 $

Dphi = R * I


$ \Delta\varphi_1 = R_2 I_2 $

Dphi = R * I


$ \Delta\varphi_3 = R_3 I $

Dphi = R * I


$ \Delta\varphi = R_s I $

Dphi = R * I


$ I = I_1 + I_2 $

I = I_1 + I_2


$ R_s = R_p + R_3 $

R_s = R_1 + R_2


$\displaystyle\frac{1}{ R_p }=\displaystyle\frac{1}{ R_1 }+\displaystyle\frac{1}{ R_2 }$

1/ R_p =1/ R_1 + 1/ R_2

ID:(16023, 0)



Resistance in parallel (2)

Equation

>Top, >Model


The inverse of the resistance in Parallel ($R_p$) is equal to the sum of the inverses of the resistance 1 ($R_1$) and the resistance 2 ($R_2$). This relationship is expressed as:

$\displaystyle\frac{1}{ R_p }=\displaystyle\frac{1}{ R_1 }+\displaystyle\frac{1}{ R_2 }$

$R_1$
Resistance 1
$Ohm$
5500
$R_2$
Resistance 2
$Ohm$
5501
$R_p$
Resistance in Parallel
$Ohm$
5499

ID:(16006, 0)



Series resistance (2)

Equation

>Top, >Model


In the case of two resistors connected in series, the resistance in Series ($R_s$) is equal to the sum of the resistance 1 ($R_1$) and the resistance 2 ($R_2$). This relationship is expressed as:

$ R_s = R_p + R_3 $

$ R_s = R_1 + R_2 $

$R_1$
$R_p$
Resistance in Parallel
$Ohm$
5499
$R_2$
$R_3$
Resistance 3
$Ohm$
5502
$R_s$
Resistance in Series
$Ohm$
5498

None

ID:(16004, 0)



Sum of currents (2)

Equation

>Top, >Model


By the principle of conservation of electric charge, the current ($I$) is equal to the sum of the current 1 ($I_1$) and the current 2 ($I_2$). This relationship is expressed as:

$ I = I_1 + I_2 $

$I$
Current
$A$
5483
$I_1$
Current 1
$A$
9677
$I_2$
Current 2
$A$
9678

ID:(16009, 0)



Sum of potential difference (2)

Equation

>Top, >Model


By the principle of energy conservation, the potential difference ($\Delta\varphi$) is equal to the sum of the difference of potential 1 ($\Delta\varphi_1$) and the difference of potential 2 ($\Delta\varphi_2$). This can be expressed through the following relationship:

$ \Delta\varphi = \Delta\varphi_1 + \Delta\varphi_3 $

$ \Delta\varphi = \Delta\varphi_1 + \Delta\varphi_2 $

$\Delta\varphi_1$
Difference of potential 1
$V$
5538
$\Delta\varphi_2$
$\Delta\varphi_3$
Difference of potential 3
$V$
10486
$\Delta\varphi$
Potential difference
$V$
5477

ID:(16012, 0)



Ohm's law (1)

Equation

>Top, >Model


Traditional Ohm's law establishes a relationship between the potential difference ($\Delta\varphi$) and the current ($I$) through the resistance ($R$), using the following expression:

$ \Delta\varphi_1 = R_p I $

$ \Delta\varphi = R I $

$I$
Current
$A$
5483
$\Delta\varphi$
$\Delta\varphi_1$
Difference of potential 1
$V$
5538
$R$
$R_p$
Resistance in Parallel
$Ohm$
5499

None

ID:(3214, 1)



Ohm's law (2)

Equation

>Top, >Model


Traditional Ohm's law establishes a relationship between the potential difference ($\Delta\varphi$) and the current ($I$) through the resistance ($R$), using the following expression:

$ \Delta\varphi_1 = R_1 I_1 $

$ \Delta\varphi = R I $

$I$
$I_1$
Current 1
$A$
9677
$\Delta\varphi$
$\Delta\varphi_1$
Difference of potential 1
$V$
5538
$R$
$R_1$
Resistance 1
$Ohm$
5500

None

ID:(3214, 2)



Ohm's law (3)

Equation

>Top, >Model


Traditional Ohm's law establishes a relationship between the potential difference ($\Delta\varphi$) and the current ($I$) through the resistance ($R$), using the following expression:

$ \Delta\varphi_1 = R_2 I_2 $

$ \Delta\varphi = R I $

$I$
$I_2$
Current 2
$A$
9678
$\Delta\varphi$
$\Delta\varphi_1$
Difference of potential 1
$V$
5538
$R$
$R_2$
Resistance 2
$Ohm$
5501

None

ID:(3214, 3)



Ohm's law (4)

Equation

>Top, >Model


Traditional Ohm's law establishes a relationship between the potential difference ($\Delta\varphi$) and the current ($I$) through the resistance ($R$), using the following expression:

$ \Delta\varphi_3 = R_3 I $

$ \Delta\varphi = R I $

$I$
Current
$A$
5483
$\Delta\varphi$
$\Delta\varphi_3$
Difference of potential 3
$V$
10486
$R$
$R_3$
Resistance 3
$Ohm$
5502

None

ID:(3214, 4)



Ohm's law (5)

Equation

>Top, >Model


Traditional Ohm's law establishes a relationship between the potential difference ($\Delta\varphi$) and the current ($I$) through the resistance ($R$), using the following expression:

$ \Delta\varphi = R_s I $

$ \Delta\varphi = R I $

$I$
Current
$A$
5483
$\Delta\varphi$
Potential difference
$V$
5477
$R$
$R_s$
Resistance in Series
$Ohm$
5498

None

ID:(3214, 5)