Loading web-font TeX/Math/Italic
User: No user logged in.


Parallel resistance (3)

Storyboard

When the resistors are connected in parallel, they are all exposed to the same potential difference which, by Ohm's law, generates different currents. The total current is the sum of the partial currents, so the total resistance is the inverse of the sum of the inverse of the individual resistances.

>Model

ID:(2120, 0)



Mechanisms

Iframe

>Top



Code
Concept

Mechanisms

ID:(16033, 0)



Model

Top

>Top



Parameters

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
R_1
R_1
Resistance 1
Ohm
R_2
R_2
Resistance 2
Ohm
R_3
R_3
Resistance 3
Ohm
R_p
R_p
Resistance in Parallel
Ohm

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
I
I
Current
A
I_1
I_1
Current 1
A
I_2
I_2
Current 2
A
I_3
I_3
Current 3
A
\Delta\varphi
Dphi
Potential difference
V

Calculations


First, select the equation: to , then, select the variable: to
Dphi = R_p * I Dphi = R_1 * I_1 Dphi = R_2 * I_2 Dphi = R_3 * I_3 I = I_1 + I_2 + I_3 1/ R_p =1/ R_1 + 1/ R_2 + 1/ R_3 II_1I_2I_3DphiR_1R_2R_3R_p

Calculations

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

Variable Given Calculate Target : Equation To be used
Dphi = R_p * I Dphi = R_1 * I_1 Dphi = R_2 * I_2 Dphi = R_3 * I_3 I = I_1 + I_2 + I_3 1/ R_p =1/ R_1 + 1/ R_2 + 1/ R_3 II_1I_2I_3DphiR_1R_2R_3R_p




Equations

#
Equation

\Delta\varphi = R_p I

Dphi = R * I


\Delta\varphi = R_1 I_1

Dphi = R * I


\Delta\varphi = R_2 I_2

Dphi = R * I


\Delta\varphi = R_3 I_3

Dphi = R * I


I = I_1 + I_2 + I_3

I = I_1 + I_2 + I_3


\displaystyle\frac{1}{ R_p }=\displaystyle\frac{1}{ R_1 }+\displaystyle\frac{1}{ R_2 }+\displaystyle\frac{1}{ R_3 }

1/ R_p =1/ R_1 + 1/ R_2 + 1/ R_3

ID:(16022, 0)



Resistance in parallel (3)

Equation

>Top, >Model


The inverse of the resistance in Parallel (R_p) is equal to the sum of the inverses of the resistance 1 (R_1), the resistance 2 (R_2) and the resistance 3 (R_3). This relationship is expressed as:

\displaystyle\frac{1}{ R_p }=\displaystyle\frac{1}{ R_1 }+\displaystyle\frac{1}{ R_2 }+\displaystyle\frac{1}{ R_3 }

R_1
Resistance 1
Ohm
5500
R_2
Resistance 2
Ohm
5501
R_3
Resistance 3
Ohm
5502
R_p
Resistance in Parallel
Ohm
5499
Dphi = R_p * I Dphi = R_1 * I_1 Dphi = R_2 * I_2 Dphi = R_3 * I_3 1/ R_p =1/ R_1 + 1/ R_2 + 1/ R_3 I = I_1 + I_2 + I_3 II_1I_2I_3DphiR_1R_2R_3R_p

ID:(16007, 0)



Sum of currents (3)

Equation

>Top, >Model


By the principle of conservation of electric charge, the current (I) is equal to the sum of the current 1 (I_1), the current 2 (I_2) and the current 3 (I_3). This relationship is expressed as:

I = I_1 + I_2 + I_3

I
Current
A
5483
I_1
Current 1
A
9677
I_2
Current 2
A
9678
I_3
Current 3
A
10484
Dphi = R_p * I Dphi = R_1 * I_1 Dphi = R_2 * I_2 Dphi = R_3 * I_3 1/ R_p =1/ R_1 + 1/ R_2 + 1/ R_3 I = I_1 + I_2 + I_3 II_1I_2I_3DphiR_1R_2R_3R_p

ID:(16010, 0)



Ohm's law (1)

Equation

>Top, >Model


Traditional Ohm's law establishes a relationship between the potential difference (\Delta\varphi) and the current (I) through the resistance (R), using the following expression:

\Delta\varphi = R_p I

\Delta\varphi = R I

I
Current
A
5483
\Delta\varphi
Potential difference
V
5477
R
R_p
Resistance in Parallel
Ohm
5499
Dphi = R_p * I Dphi = R_1 * I_1 Dphi = R_2 * I_2 Dphi = R_3 * I_3 1/ R_p =1/ R_1 + 1/ R_2 + 1/ R_3 I = I_1 + I_2 + I_3 II_1I_2I_3DphiR_1R_2R_3R_p

None

ID:(3214, 1)



Ohm's law (2)

Equation

>Top, >Model


Traditional Ohm's law establishes a relationship between the potential difference (\Delta\varphi) and the current (I) through the resistance (R), using the following expression:

\Delta\varphi = R_1 I_1

\Delta\varphi = R I

I
I_1
Current 1
A
9677
\Delta\varphi
Potential difference
V
5477
R
R_1
Resistance 1
Ohm
5500
Dphi = R_p * I Dphi = R_1 * I_1 Dphi = R_2 * I_2 Dphi = R_3 * I_3 1/ R_p =1/ R_1 + 1/ R_2 + 1/ R_3 I = I_1 + I_2 + I_3 II_1I_2I_3DphiR_1R_2R_3R_p

None

ID:(3214, 2)



Ohm's law (3)

Equation

>Top, >Model


Traditional Ohm's law establishes a relationship between the potential difference (\Delta\varphi) and the current (I) through the resistance (R), using the following expression:

\Delta\varphi = R_2 I_2

\Delta\varphi = R I

I
I_2
Current 2
A
9678
\Delta\varphi
Potential difference
V
5477
R
R_2
Resistance 2
Ohm
5501
Dphi = R_p * I Dphi = R_1 * I_1 Dphi = R_2 * I_2 Dphi = R_3 * I_3 1/ R_p =1/ R_1 + 1/ R_2 + 1/ R_3 I = I_1 + I_2 + I_3 II_1I_2I_3DphiR_1R_2R_3R_p

None

ID:(3214, 3)



Ohm's law (4)

Equation

>Top, >Model


Traditional Ohm's law establishes a relationship between the potential difference (\Delta\varphi) and the current (I) through the resistance (R), using the following expression:

\Delta\varphi = R_3 I_3

\Delta\varphi = R I

I
I_3
Current 3
A
10484
\Delta\varphi
Potential difference
V
5477
R
R_3
Resistance 3
Ohm
5502
Dphi = R_p * I Dphi = R_1 * I_1 Dphi = R_2 * I_2 Dphi = R_3 * I_3 1/ R_p =1/ R_1 + 1/ R_2 + 1/ R_3 I = I_1 + I_2 + I_3 II_1I_2I_3DphiR_1R_2R_3R_p

None

ID:(3214, 4)