Benützer:


Zwei Platten mit entgegengesetzter Ladung

Storyboard

Die als parallele Platten bekannte Geometrie kann als zwei unendliche Ebenen beschrieben werden, die mit gleichen und entgegengesetzten Ladungen elektrisch geladen sind.

>Modell

ID:(2076, 0)



Zwei Platten mit entgegengesetzter Ladung

Storyboard

Die als parallele Platten bekannte Geometrie kann als zwei unendliche Ebenen beschrieben werden, die mit gleichen und entgegengesetzten Ladungen elektrisch geladen sind.

Variablen

Symbol
Text
Variable
Wert
Einheiten
Berechnen
MKS-Wert
MKS-Einheiten
$\epsilon$
epsilon
Dielektrizitätskonstante
-
$E_d$
E_d
Elektrisches Feld, zwei unendliche Platten
V/m
$\varphi_1$
phi_1
Elektrisches Potential 1
V
$\varphi_2$
phi_2
Elektrisches Potential 2
V
$v_1$
v_1
Geschwindigkeit 1
m/s
$v_2$
v_2
Geschwindigkeit 2
m/s
$Q$
Q
Ladung
C
$\sigma$
sigma
Ladungsdichte nach Fläche
C/m^2
$S$
S
Oberfläche der Leiters
m^2
$m$
m
Partikelmasse
kg
$z_1$
z_1
Position auf 1
m
$z_2$
z_2
Position auf 2
m
$q$
q
Test Ladung
C

Berechnungen


Zuerst die Gleichung auswählen:   zu ,  dann die Variable auswählen:   zu 

Symbol
Gleichung
Gelöst
Übersetzt

Berechnungen

Symbol
Gleichung
Gelöst
Übersetzt

 Variable   Gegeben   Berechnen   Ziel :   Gleichung   Zu verwenden



Gleichungen

Im Fall einer gau schen Fl che f r eine Ebene ist der Elektrisches Feld ($\vec{E}$) in der Richtung von der Versor normal zum Abschnitt ($\hat{n}$) konstant. Daher kann unter Verwendung der Variablen die Ladung ($Q$), die Elektrische Feldkonstante ($\epsilon_0$) und die Dielektrizitätskonstante ($\epsilon$) durch Integration ber die Oberfläche, wo das elektrische Feld konstant ($dS$) berechnet werden:

equation=3213

Zus tzlich wird die Ladungsdichte nach Fläche ($\sigma$) unter Verwendung von die Oberfläche ($S$) und die Ladung ($Q$) nach folgender Gleichung berechnet:

equation=11460

Daraus ergibt sich, dass der Elektrisches Feld, zwei unendliche Platten ($E_d$) ist:

equation

Der Elektrisches Potential, unendliche Platten ($\varphi_d$) in Bezug auf der Elektrisches Feld, zwei unendliche Platten ($E_d$) und die Position auf der z-Achse ($z$) wird wie folgt ausgedr ckt:

equation=11578

hnlich wird der Elektrisches Feld, zwei unendliche Platten ($E_d$) in Bezug auf die Elektrische Feldkonstante ($\epsilon_0$), die Dielektrizitätskonstante ($\epsilon$) und die Ladungsdichte nach Fläche ($\sigma$) definiert durch:

equation=11449

Durch Integration vom Ursprung erhalten wir:

$\varphi_d = -\displaystyle\int_0^z du \displaystyle\frac{ \sigma }{ \epsilon_0 \epsilon }= -\displaystyle\frac{ \sigma }{ \epsilon_0 \epsilon } z$



Daher ergibt sich der Elektrisches Potential, unendliche Platten ($\varphi_d$) durch:

equation

Der Elektrisches Potential, unendliche Platten ($\varphi_d$) in Bezug auf der Elektrisches Feld, zwei unendliche Platten ($E_d$) und die Position auf der z-Achse ($z$) wird wie folgt ausgedr ckt:

equation=11578

hnlich wird der Elektrisches Feld, zwei unendliche Platten ($E_d$) in Bezug auf die Elektrische Feldkonstante ($\epsilon_0$), die Dielektrizitätskonstante ($\epsilon$) und die Ladungsdichte nach Fläche ($\sigma$) definiert durch:

equation=11449

Durch Integration vom Ursprung erhalten wir:

$\varphi_d = -\displaystyle\int_0^z du \displaystyle\frac{ \sigma }{ \epsilon_0 \epsilon }= -\displaystyle\frac{ \sigma }{ \epsilon_0 \epsilon } z$



Daher ergibt sich der Elektrisches Potential, unendliche Platten ($\varphi_d$) durch:

equation


Beispiele


mechanisms

Im Fall einer gau schen Fl che f r eine Ebene ist der Elektrisches Feld ($\vec{E}$) in der Richtung von der Versor normal zum Abschnitt ($\hat{n}$) konstant. Daher kann unter Verwendung der Variablen die Ladung ($Q$), die Elektrische Feldkonstante ($\epsilon_0$) und die Dielektrizitätskonstante ($\epsilon$) durch Integration ber die Oberfläche, wo das elektrische Feld konstant ($dS$) berechnet werden:

equation=3213

was in der Grafik dargestellt ist

image

Zus tzlich wird die Ladungsdichte nach Fläche ($\sigma$) unter Verwendung von die Oberfläche ($S$) und die Ladung ($Q$) nach folgender Gleichung berechnet:

equation=11460

Daraus ergibt sich, dass der Elektrisches Feld, zwei unendliche Platten ($E_d$) ist:

equation=11449

Der Elektrisches Potential, unendliche Platten ($\varphi_d$) in Bezug auf der Elektrisches Feld, zwei unendliche Platten ($E_d$) und die Position auf der z-Achse ($z$) wird wie folgt ausgedr ckt:

equation=11578

hnlich wird der Elektrisches Feld, zwei unendliche Platten ($E_d$) in Bezug auf die Elektrische Feldkonstante ($\epsilon_0$), die Dielektrizitätskonstante ($\epsilon$) und die Ladungsdichte nach Fläche ($\sigma$) definiert durch:

equation=11449

Durch Integration vom Ursprung erhalten wir:

$\varphi_d = -\displaystyle\int_0^z du \displaystyle\frac{ \sigma }{ \epsilon_0 \epsilon }= -\displaystyle\frac{ \sigma }{ \epsilon_0 \epsilon } z$



Daher ergibt sich der Elektrisches Potential, unendliche Platten ($\varphi_d$) durch:

equation=11587

Wie in der folgenden Grafik dargestellt:

image

muss das Feld an zwei Punkten die gleiche Energie aufweisen. Daher m ssen die Variablen die Ladung ($Q$), die Partikelmasse ($m$), die Geschwindigkeit 1 ($v_1$), die Geschwindigkeit 2 ($v_2$) und der Elektrisches Potential 1 ($\varphi_1$) gem der Gleichung:

equation=11587,1

und der Elektrisches Potential 2 ($\varphi_2$) gem der Gleichung:

equation=11587,2

die folgende Beziehung erf llen:

equation=11596


model

Die Oberfl chenladungsdichte wird berechnet, indem die Gesamtladung durch die Fl che geteilt wird. Daher wird die Beziehung zwischen die Ladungsdichte nach Fläche ($\sigma$) und die Ladung ($Q$) mit die Oberfläche der Leiters ($S$) wie folgt festgelegt:

kyon

Elektrische Potentiale, die die potenzielle Energie pro Ladungseinheit darstellen, beeinflussen, wie sich die Geschwindigkeit eines Teilchens ndert. Daher folgt aus der Energieerhaltung zwischen zwei Punkten, dass in Anwesenheit der Variablen die Ladung ($q$), die Partikelmasse ($m$), die Geschwindigkeit 1 ($v_1$), die Geschwindigkeit 2 ($v_2$), der Elektrisches Potential 1 ($\varphi_1$) und der Elektrisches Potential 2 ($\varphi_2$) die folgende Beziehung erf llt sein muss:

kyon


>Modell

ID:(2076, 0)



Mechanismen

Definition


ID:(15795, 0)



Teilchen in einem Unendliches elektrisches von zwei Platten

Bild

Im Fall einer gaußschen Fläche für eine Ebene ist der Elektrisches Feld ($\vec{E}$) in der Richtung von der Versor normal zum Abschnitt ($\hat{n}$) konstant. Daher kann unter Verwendung der Variablen die Ladung ($Q$), die Elektrische Feldkonstante ($\epsilon_0$) und die Dielektrizitätskonstante ($\epsilon$) durch Integration über die Oberfläche, wo das elektrische Feld konstant ($dS$) berechnet werden:



was in der Grafik dargestellt ist



Zusätzlich wird die Ladungsdichte nach Fläche ($\sigma$) unter Verwendung von die Oberfläche ($S$) und die Ladung ($Q$) nach folgender Gleichung berechnet:



Daraus ergibt sich, dass der Elektrisches Feld, zwei unendliche Platten ($E_d$) ist:

ID:(11836, 0)



Teilchen in einem elektrisches Potencial von zwei Platten

Notiz

Der Elektrisches Potential, unendliche Platten ($\varphi_d$) in Bezug auf der Elektrisches Feld, zwei unendliche Platten ($E_d$) und die Position auf der z-Achse ($z$) wird wie folgt ausgedrückt:



Ähnlich wird der Elektrisches Feld, zwei unendliche Platten ($E_d$) in Bezug auf die Elektrische Feldkonstante ($\epsilon_0$), die Dielektrizitätskonstante ($\epsilon$) und die Ladungsdichte nach Fläche ($\sigma$) definiert durch:



Durch Integration vom Ursprung erhalten wir:

$\varphi_d = -\displaystyle\int_0^z du \displaystyle\frac{ \sigma }{ \epsilon_0 \epsilon }= -\displaystyle\frac{ \sigma }{ \epsilon_0 \epsilon } z$



Daher ergibt sich der Elektrisches Potential, unendliche Platten ($\varphi_d$) durch:



Wie in der folgenden Grafik dargestellt:



muss das Feld an zwei Punkten die gleiche Energie aufweisen. Daher müssen die Variablen die Ladung ($Q$), die Partikelmasse ($m$), die Geschwindigkeit 1 ($v_1$), die Geschwindigkeit 2 ($v_2$) und der Elektrisches Potential 1 ($\varphi_1$) gemäß der Gleichung:



und der Elektrisches Potential 2 ($\varphi_2$) gemäß der Gleichung:



die folgende Beziehung erfüllen:

ID:(11843, 0)



Modell

Zitat


ID:(15805, 0)