Cilindro de acionamento
Storyboard 
Variáveis
Cálculos
Cálculos
Equações
No caso de uma superf cie gaussiana cil ndrica, o campo elétrico ($\vec{E}$) constante na dire o de o versor normal para seção ($\hat{n}$). Portanto, utilizando as vari veis la charge ($Q$), la constante de campo elétrico ($\epsilon_0$) e la constante dielétrica ($\epsilon$), o integral sobre la superfície na qual o campo elétrico é constante ($dS$) pode ser calculado atrav s da seguinte equa o:
Para um cilindro caracterizado por la distância ao eixo ($r$) e o comprimento do conductor ($L$), aplica-se:
Al m disso, la densidade de carga linear ($\lambda$) calculado usando la charge ($Q$) conforme a equa o:
Assim, estabelece-se que o campo elétrico, cilindro condutor infinito ($E_c$) :
No caso de uma superf cie gaussiana cil ndrica, o campo elétrico ($\vec{E}$) constante na dire o de o versor normal para seção ($\hat{n}$). Portanto, utilizando as vari veis la charge ($Q$), la constante de campo elétrico ($\epsilon_0$) e la constante dielétrica ($\epsilon$), o integral sobre la superfície na qual o campo elétrico é constante ($dS$) pode ser calculado atrav s da seguinte equa o:
Para um cilindro caracterizado por la distância ao eixo ($r$) e o comprimento do conductor ($L$), aplica-se:
Al m disso, la densidade de carga linear ($\lambda$) calculado usando la charge ($Q$) conforme a equa o:
Assim, estabelece-se que o campo elétrico, cilindro condutor infinito ($E_c$) :
O potencial elétrico, cilindro condutor infinito ($\varphi_c$) derivado da integra o radial de o campo elétrico, cilindro condutor infinito ($E_c$), de o raio do cilindro ($r_0$) at la distância ao eixo ($r$), resultando na seguinte equa o:
Al m disso, para as vari veis la charge ($Q$), la constante dielétrica ($\epsilon$) e la constante de campo elétrico ($\epsilon_0$), o valor de o campo elétrico, cilindro condutor infinito ($E_c$) expresso como:
Isso implica que, ao realizar a integra o
$\varphi_c = -\displaystyle\int_{r_0}^r du \displaystyle\frac{ \lambda }{ 2 \pi \epsilon_0 \epsilon u }= -\displaystyle\frac{ \lambda }{ 2 \pi \epsilon_0 \epsilon } \ln\left(\displaystyle\frac{ r }{ r_0 }\right)$
a seguinte equa o obtida:
O potencial elétrico, cilindro condutor infinito ($\varphi_c$) derivado da integra o radial de o campo elétrico, cilindro condutor infinito ($E_c$), de o raio do cilindro ($r_0$) at la distância ao eixo ($r$), resultando na seguinte equa o:
Al m disso, para as vari veis la charge ($Q$), la constante dielétrica ($\epsilon$) e la constante de campo elétrico ($\epsilon_0$), o valor de o campo elétrico, cilindro condutor infinito ($E_c$) expresso como:
Isso implica que, ao realizar a integra o
$\varphi_c = -\displaystyle\int_{r_0}^r du \displaystyle\frac{ \lambda }{ 2 \pi \epsilon_0 \epsilon u }= -\displaystyle\frac{ \lambda }{ 2 \pi \epsilon_0 \epsilon } \ln\left(\displaystyle\frac{ r }{ r_0 }\right)$
a seguinte equa o obtida:
Exemplos
No caso de uma superf cie gaussiana cil ndrica, o campo elétrico ($\vec{E}$) constante na dire o de o versor normal para seção ($\hat{n}$). Portanto, utilizando as vari veis la charge ($Q$), la constante de campo elétrico ($\epsilon_0$) e la constante dielétrica ($\epsilon$), o integral sobre la superfície na qual o campo elétrico é constante ($dS$) pode ser calculado atrav s da seguinte equa o:
Para um cilindro caracterizado por la distância ao eixo ($r$) e o comprimento do conductor ($L$), aplica-se:
o que mostrado no gr fico
Al m disso, la densidade de carga linear ($\lambda$) calculado usando la charge ($Q$) conforme a equa o:
Assim, estabelece-se que o campo elétrico, cilindro condutor infinito ($E_c$) :
No caso de uma superf cie gaussiana cil ndrica, o campo elétrico ($\vec{E}$) constante na dire o de o versor normal para seção ($\hat{n}$). Portanto, utilizando as vari veis la charge ($Q$), la constante de campo elétrico ($\epsilon_0$) e la constante dielétrica ($\epsilon$), o integral sobre la superfície na qual o campo elétrico é constante ($dS$) pode ser calculado atrav s da seguinte equa o:
Para um cilindro caracterizado por la distância ao eixo ($r$) e o comprimento do conductor ($L$), aplica-se:
Al m disso, la densidade de carga linear ($\lambda$) calculado usando la charge ($Q$) conforme a equa o:
Assim, estabelece-se que o campo elétrico, cilindro condutor infinito ($E_c$) :
Como ilustrado no seguinte gr fico:
o campo em dois pontos deve possuir a mesma energia. Portanto, as vari veis la charge ($Q$), la massa molar ($m$), la velocidade 1 ($v_1$), la velocidade 2 ($v_2$) e o potencial elétrico 1 ($\varphi_1$) conforme a equa o:
e o potencial elétrico 2 ($\varphi_2$), conforme a equa o:
devem satisfazer a seguinte rela o:
La densidade de carga linear ($\lambda$) calculado como la charge ($Q$) dividido por o comprimento do conductor ($L$):
O campo elétrico, cilindro condutor infinito ($E_c$) com o pi ($\pi$), la constante de campo elétrico ($\epsilon_0$), la constante dielétrica ($\epsilon$), la densidade de carga linear ($\lambda$) e la distância ao eixo ($r$) igual a:
O campo elétrico, cilindro condutor infinito ($E_c$) com o pi ($\pi$), la constante de campo elétrico ($\epsilon_0$), la constante dielétrica ($\epsilon$), la densidade de carga linear ($\lambda$) e la distância ao eixo ($r$) igual a:
O potencial elétrico, cilindro condutor infinito ($\varphi_c$) com o pi ($\pi$), la constante de campo elétrico ($\epsilon_0$), la constante dielétrica ($\epsilon$), la densidade de carga linear ($\lambda$), la distância ao eixo ($r$) e o raio do cilindro ($r_0$) igual a:
O potencial elétrico, cilindro condutor infinito ($\varphi_c$) com o pi ($\pi$), la constante de campo elétrico ($\epsilon_0$), la constante dielétrica ($\epsilon$), la densidade de carga linear ($\lambda$), la distância ao eixo ($r$) e o raio do cilindro ($r_0$) igual a:
Os potenciais el tricos, que representam a energia potencial por unidade de carga, influenciam como a velocidade de uma part cula varia. Consequentemente, devido conserva o de energia entre dois pontos, segue-se que na presen a das vari veis la carga ($q$), la massa molar ($m$), la velocidade 1 ($v_1$), la velocidade 2 ($v_2$), o potencial elétrico 1 ($\varphi_1$) e o potencial elétrico 2 ($\varphi_2$), a seguinte rela o deve ser satisfeita:
ID:(2075, 0)
