Conducting cylinder

Storyboard

>Model

ID:(2075, 0)



Mechanisms

Iframe

>Top



Code
Concept

Mechanisms

ID:(15794, 0)



Particle in electric field of an infinite cylinder

Concept

>Top


In the case of a cylindrical Gaussian surface, the electric field ($\vec{E}$) is constant in the direction of the versor normal to the section ($\hat{n}$). Therefore, using the variables the charge ($Q$), the electric field constant ($\epsilon_0$), and the dielectric constant ($\epsilon$), the integral over the surface where the electric field is constant ($dS$) can be calculated through the following equation:

$\displaystyle\int_S\vec{E}\cdot\hat{n}\,dS=\displaystyle\frac{Q}{\epsilon_0\epsilon}$



For a cylinder characterized by the axle distance ($r$) and the conductor length ($L$), the following applies:

$ S =2 \pi r h $



what is shown in the graph



Furthermore, the linear charge density ($\lambda$) is calculated using the charge ($Q$) according to the equation:

$ \lambda = \displaystyle\frac{ Q }{ L }$



Thus, it is established that the electric field, infinite conducting cylinder ($E_c$) is:

$ E_c =\displaystyle\frac{1}{2 \pi \epsilon_0 \epsilon }\displaystyle\frac{ \lambda }{ r }$

ID:(11838, 0)



Particle in electric potencial of an infinite cylinder

Concept

>Top


In the case of a cylindrical Gaussian surface, the electric field ($\vec{E}$) is constant in the direction of the versor normal to the section ($\hat{n}$). Therefore, using the variables the charge ($Q$), the electric field constant ($\epsilon_0$), and the dielectric constant ($\epsilon$), the integral over the surface where the electric field is constant ($dS$) can be calculated through the following equation:

$\displaystyle\int_S\vec{E}\cdot\hat{n}\,dS=\displaystyle\frac{Q}{\epsilon_0\epsilon}$



For a cylinder characterized by the axle distance ($r$) and the conductor length ($L$), the following applies:

$ S =2 \pi r h $



Furthermore, the linear charge density ($\lambda$) is calculated using the charge ($Q$) according to the equation:

$ \lambda = \displaystyle\frac{ Q }{ L }$



Thus, it is established that the electric field, infinite conducting cylinder ($E_c$) is:

$ \varphi_c = -\displaystyle\frac{ \lambda }{ 2 \pi \epsilon_0 \epsilon }\ln\left(\displaystyle\frac{ r }{ r_0 }\right)$



As illustrated in the following graph:



the field at two points must have the same energy. Therefore, the variables the charge ($Q$), the particle mass ($m$), the speed 1 ($v_1$), the speed 2 ($v_2$), and the electric potential 1 ($\varphi_1$) according to the equation:

$ \varphi_1 = -\displaystyle\frac{ \lambda }{ 2 \pi \epsilon_0 \epsilon }\ln\left(\displaystyle\frac{ r_1 }{ r_0 }\right)$



and the electric potential 2 ($\varphi_2$), according to the equation:

$ \varphi_2 = -\displaystyle\frac{ \lambda }{ 2 \pi \epsilon_0 \epsilon }\ln\left(\displaystyle\frac{ r_2 }{ r_0 }\right)$



must satisfy the following relationship:

$ \displaystyle\frac{1}{2} m v_1 ^2 + q \varphi_1 = \displaystyle\frac{1}{2} m v_2 ^2 + q \varphi_2 $

ID:(11845, 0)



Model

Top

>Top



Parameters

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$L$
L
Conductor length
m
$r_0$
r_0
Cylinder radius
m
$\epsilon$
epsilon
Dielectric constant
-
$\epsilon_0$
epsilon_0
Electric field constant
C^2/m^2N
$m$
m
Particle mass
kg
$\pi$
pi
Pi
rad

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$Q$
Q
Charge
C
$E_{c1}$
E_c1
Electric field, infinite conducting cylinder in 1
V/m
$E_{c2}$
E_c2
Electric field, infinite conducting cylinder in 2
V/m
$\varphi_1$
phi_1
Electric potential 1
V
$\varphi_2$
phi_2
Electric potential 2
V
$\lambda$
lambda
Linear charge density
C/m
$r_1$
r_1
Radius 1
m
$r_2$
r_2
Radius 2
m
$v_1$
v_1
Speed 1
m/s
$v_2$
v_2
Speed 2
m/s
$q$
q
Test charge
C

Calculations


First, select the equation: to , then, select the variable: to

Calculations

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

Variable Given Calculate Target : Equation To be used




Equations

#
Equation

$ E_{c1} =\displaystyle\frac{1}{2 \pi \epsilon_0 \epsilon }\displaystyle\frac{ \lambda }{ r_1 }$

E_c = lambda /(2 * pi * epsilon_0 * epsilon * r )


$ E_{c2} =\displaystyle\frac{1}{2 \pi \epsilon_0 \epsilon }\displaystyle\frac{ \lambda }{ r_2 }$

E_c = lambda /(2 * pi * epsilon_0 * epsilon * r )


$ \lambda = \displaystyle\frac{ Q }{ L }$

lambda = Q / L


$ \displaystyle\frac{1}{2} m v_1 ^2 + q \varphi_1 = \displaystyle\frac{1}{2} m v_2 ^2 + q \varphi_2 $

m * v_1 ^2/2 + q * phi_1 = m * v_2 ^2/2 + q * phi_2


$ \varphi_1 = -\displaystyle\frac{ \lambda }{ 2 \pi \epsilon_0 \epsilon }\ln\left(\displaystyle\frac{ r_1 }{ r_0 }\right)$

phi_c = - lambda * log( r / r_0 )/(2 * pi * epsilon * epsilon_0 )


$ \varphi_2 = -\displaystyle\frac{ \lambda }{ 2 \pi \epsilon_0 \epsilon }\ln\left(\displaystyle\frac{ r_2 }{ r_0 }\right)$

phi_c = - lambda * log( r / r_0 )/(2 * pi * epsilon * epsilon_0 )

ID:(15804, 0)



Linear load density

Equation

>Top, >Model


The linear charge density ($\lambda$) is calculated as the charge ($Q$) divided by the conductor length ($L$):

$ \lambda = \displaystyle\frac{ Q }{ L }$

$Q$
Charge
$C$
5459
$L$
Conductor length
$m$
5206
$\lambda$
Linear charge density
$C/m$
8535

ID:(11459, 0)



Infinite conducting cylinder (1)

Equation

>Top, >Model


The electric field, infinite conducting cylinder ($E_c$) is with the pi ($\pi$), the electric field constant ($\epsilon_0$), the dielectric constant ($\epsilon$), the linear charge density ($\lambda$) and the axle distance ($r$) is equal to:

$ E_{c1} =\displaystyle\frac{1}{2 \pi \epsilon_0 \epsilon }\displaystyle\frac{ \lambda }{ r_1 }$

$ E_c =\displaystyle\frac{1}{2 \pi \epsilon_0 \epsilon }\displaystyle\frac{ \lambda }{ r }$

$r$
$r_1$
Radius 1
$m$
10390
$\epsilon$
Dielectric constant
$-$
5463
$\epsilon_0$
Electric field constant
8.854187e-12
$C^2/m^2N$
5462
$E_c$
$E_{c1}$
Electric field, infinite conducting cylinder in 1
$V/m$
10478
$\lambda$
Linear charge density
$C/m$
8535
$\pi$
Pi
3.1415927
$rad$
5057

In the case of a cylindrical Gaussian surface, the electric field ($\vec{E}$) is constant in the direction of the versor normal to the section ($\hat{n}$). Therefore, using the variables the charge ($Q$), the electric field constant ($\epsilon_0$), and the dielectric constant ($\epsilon$), the integral over the surface where the electric field is constant ($dS$) can be calculated through the following equation:

$\displaystyle\int_S\vec{E}\cdot\hat{n}\,dS=\displaystyle\frac{Q}{\epsilon_0\epsilon}$



For a cylinder characterized by the axle distance ($r$) and the conductor length ($L$), the following applies:

$ S =2 \pi r h $



Furthermore, the linear charge density ($\lambda$) is calculated using the charge ($Q$) according to the equation:

$ \lambda = \displaystyle\frac{ Q }{ L }$



Thus, it is established that the electric field, infinite conducting cylinder ($E_c$) is:

$ E_c =\displaystyle\frac{1}{2 \pi \epsilon_0 \epsilon }\displaystyle\frac{ \lambda }{ r }$

ID:(11445, 1)



Infinite conducting cylinder (2)

Equation

>Top, >Model


The electric field, infinite conducting cylinder ($E_c$) is with the pi ($\pi$), the electric field constant ($\epsilon_0$), the dielectric constant ($\epsilon$), the linear charge density ($\lambda$) and the axle distance ($r$) is equal to:

$ E_{c2} =\displaystyle\frac{1}{2 \pi \epsilon_0 \epsilon }\displaystyle\frac{ \lambda }{ r_2 }$

$ E_c =\displaystyle\frac{1}{2 \pi \epsilon_0 \epsilon }\displaystyle\frac{ \lambda }{ r }$

$r$
$r_2$
Radius 2
$m$
10391
$\epsilon$
Dielectric constant
$-$
5463
$\epsilon_0$
Electric field constant
8.854187e-12
$C^2/m^2N$
5462
$E_c$
$E_{c2}$
Electric field, infinite conducting cylinder in 2
$V/m$
10479
$\lambda$
Linear charge density
$C/m$
8535
$\pi$
Pi
3.1415927
$rad$
5057

In the case of a cylindrical Gaussian surface, the electric field ($\vec{E}$) is constant in the direction of the versor normal to the section ($\hat{n}$). Therefore, using the variables the charge ($Q$), the electric field constant ($\epsilon_0$), and the dielectric constant ($\epsilon$), the integral over the surface where the electric field is constant ($dS$) can be calculated through the following equation:

$\displaystyle\int_S\vec{E}\cdot\hat{n}\,dS=\displaystyle\frac{Q}{\epsilon_0\epsilon}$



For a cylinder characterized by the axle distance ($r$) and the conductor length ($L$), the following applies:

$ S =2 \pi r h $



Furthermore, the linear charge density ($\lambda$) is calculated using the charge ($Q$) according to the equation:

$ \lambda = \displaystyle\frac{ Q }{ L }$



Thus, it is established that the electric field, infinite conducting cylinder ($E_c$) is:

$ E_c =\displaystyle\frac{1}{2 \pi \epsilon_0 \epsilon }\displaystyle\frac{ \lambda }{ r }$

ID:(11445, 2)



Calculation of electrical potentials, cylindrical geometry (1)

Equation

>Top, >Model


The reference electrical, infinite conducting cylinder ($\varphi_c$) is with the pi ($\pi$), the electric field constant ($\epsilon_0$), the dielectric constant ($\epsilon$), the linear charge density ($\lambda$), the axle distance ($r$) and the cylinder radius ($r_0$) is equal to:

$ \varphi_1 = -\displaystyle\frac{ \lambda }{ 2 \pi \epsilon_0 \epsilon }\ln\left(\displaystyle\frac{ r_1 }{ r_0 }\right)$

$ \varphi_c = -\displaystyle\frac{ \lambda }{ 2 \pi \epsilon_0 \epsilon }\ln\left(\displaystyle\frac{ r }{ r_0 }\right)$

$r$
$r_1$
Radius 1
$m$
10390
$r_0$
Cylinder radius
$m$
8581
$\epsilon$
Dielectric constant
$-$
5463
$\epsilon_0$
Electric field constant
8.854187e-12
$C^2/m^2N$
5462
$\lambda$
Linear charge density
$C/m$
8535
$\pi$
Pi
3.1415927
$rad$
5057
$\varphi_c$
$\varphi_1$
Electric potential 1
$V$
10392

The reference electrical, infinite conducting cylinder ($\varphi_c$) is derived from the radial integration of the electric field, infinite conducting cylinder ($E_c$) from the cylinder radius ($r_0$) to the axle distance ($r$), resulting in the following equation:

$ \varphi_c = -\displaystyle\int_{r_0}^r du E_c$



Furthermore, for the variables the charge ($Q$), the dielectric constant ($\epsilon$), and the electric field constant ($\epsilon_0$), the value of the electric field, infinite conducting cylinder ($E_c$) is given as:

$ E_c =\displaystyle\frac{1}{2 \pi \epsilon_0 \epsilon }\displaystyle\frac{ \lambda }{ r }$



This implies that by performing the integration

$\varphi_c = -\displaystyle\int_{r_0}^r du \displaystyle\frac{ \lambda }{ 2 \pi \epsilon_0 \epsilon u }= -\displaystyle\frac{ \lambda }{ 2 \pi \epsilon_0 \epsilon } \ln\left(\displaystyle\frac{ r }{ r_0 }\right)$



the following equation is obtained:

$ \varphi_c = -\displaystyle\frac{ \lambda }{ 2 \pi \epsilon_0 \epsilon }\ln\left(\displaystyle\frac{ r }{ r_0 }\right)$

ID:(11585, 1)



Calculation of electrical potentials, cylindrical geometry (2)

Equation

>Top, >Model


The reference electrical, infinite conducting cylinder ($\varphi_c$) is with the pi ($\pi$), the electric field constant ($\epsilon_0$), the dielectric constant ($\epsilon$), the linear charge density ($\lambda$), the axle distance ($r$) and the cylinder radius ($r_0$) is equal to:

$ \varphi_2 = -\displaystyle\frac{ \lambda }{ 2 \pi \epsilon_0 \epsilon }\ln\left(\displaystyle\frac{ r_2 }{ r_0 }\right)$

$ \varphi_c = -\displaystyle\frac{ \lambda }{ 2 \pi \epsilon_0 \epsilon }\ln\left(\displaystyle\frac{ r }{ r_0 }\right)$

$r$
$r_2$
Radius 2
$m$
10391
$r_0$
Cylinder radius
$m$
8581
$\epsilon$
Dielectric constant
$-$
5463
$\epsilon_0$
Electric field constant
8.854187e-12
$C^2/m^2N$
5462
$\lambda$
Linear charge density
$C/m$
8535
$\pi$
Pi
3.1415927
$rad$
5057
$\varphi_c$
$\varphi_2$
Electric potential 2
$V$
10393

The reference electrical, infinite conducting cylinder ($\varphi_c$) is derived from the radial integration of the electric field, infinite conducting cylinder ($E_c$) from the cylinder radius ($r_0$) to the axle distance ($r$), resulting in the following equation:

$ \varphi_c = -\displaystyle\int_{r_0}^r du E_c$



Furthermore, for the variables the charge ($Q$), the dielectric constant ($\epsilon$), and the electric field constant ($\epsilon_0$), the value of the electric field, infinite conducting cylinder ($E_c$) is given as:

$ E_c =\displaystyle\frac{1}{2 \pi \epsilon_0 \epsilon }\displaystyle\frac{ \lambda }{ r }$



This implies that by performing the integration

$\varphi_c = -\displaystyle\int_{r_0}^r du \displaystyle\frac{ \lambda }{ 2 \pi \epsilon_0 \epsilon u }= -\displaystyle\frac{ \lambda }{ 2 \pi \epsilon_0 \epsilon } \ln\left(\displaystyle\frac{ r }{ r_0 }\right)$



the following equation is obtained:

$ \varphi_c = -\displaystyle\frac{ \lambda }{ 2 \pi \epsilon_0 \epsilon }\ln\left(\displaystyle\frac{ r }{ r_0 }\right)$

ID:(11585, 2)



Energy of a particle

Equation

>Top, >Model


Electric potentials, which represent potential energy per unit of charge, influence how the velocity of a particle varies. Consequently, due to the conservation of energy between two points, it follows that in the presence of variables the charge ($q$), the particle mass ($m$), the speed 1 ($v_1$), the speed 2 ($v_2$), the electric potential 1 ($\varphi_1$), and the electric potential 2 ($\varphi_2$), the following relationship must be satisfied:

$ \displaystyle\frac{1}{2} m v_1 ^2 + q \varphi_1 = \displaystyle\frac{1}{2} m v_2 ^2 + q \varphi_2 $

$\varphi_1$
Electric potential 1
$V$
10392
$\varphi_2$
Electric potential 2
$V$
10393
$m$
Particle mass
$kg$
5516
$v_1$
Speed 1
$m/s$
8562
$v_2$
Speed 2
$m/s$
8563
$q$
Test charge
$C$
8746

ID:(11596, 0)