Utilizador:


Um prato

Storyboard

A geometria referida como uma placa pode ser descrita como um plano infinito que está eletricamente carregado.

>Modelo

ID:(2079, 0)



Um prato

Storyboard

A geometria referida como uma placa pode ser descrita como um plano infinito que está eletricamente carregado.

Variáveis

Símbolo
Texto
Variáve
Valor
Unidades
Calcular
Valeur MKS
Unidades MKS
$E_s$
E_s
Campo elétrico de uma placa infinita
V/m
$q$
q
Carga de teste
C
$Q$
Q
Charge
C
$\epsilon$
epsilon
Constante dielétrica
-
$\sigma$
sigma
Densidade de carga por área
C/m^2
$m$
m
Massa molar
kg
$z_1$
z_1
Posição em 1
m
$z_2$
z_2
Posição em 2
m
$\varphi_1$
phi_1
Potencial elétrico 1
V
$\varphi_2$
phi_2
Potencial elétrico 2
V
$v_1$
v_1
Velocidade 1
m/s
$v_2$
v_2
Velocidade 2
m/s
$S$
S
Zona do condutor
m^2

Cálculos


Primeiro, selecione a equação:   para ,  depois, selecione a variável:   para 

Símbolo
Equação
Resolvido
Traduzido

Cálculos

Símbolo
Equação
Resolvido
Traduzido

 Variáve   Dado   Calcular   Objetivo :   Equação   A ser usado



Equações

De acordo com a Lei de Gauss, as vari veis la superfície na qual o campo elétrico é constante ($dS$), la charge ($Q$), la constante de campo elétrico ($\epsilon_0$), la constante dielétrica ($\epsilon$), o versor normal para seção ($\hat{n}$) e o campo elétrico ($\vec{E}$) satisfazem a seguinte equa o:

equation=3213

No caso de uma superf cie gaussiana plana, o campo deve ser constante, portanto a rela o de o campo elétrico ($E$) com la zona do condutor ($S$) estabelecida como:

equation=11456

Considerando que la densidade de carga por área ($\sigma$) tamb m definido pela seguinte equa o:

equation=11460

Para o campo elétrico de uma placa infinita ($E_s$), a express o resultante :

equation

No caso de uma placa infinita, a rela o entre o potencial elétrico, placa infinita ($\varphi_s$), o campo elétrico de uma placa infinita ($E_s$) e la posição no eixo z ($z$) estabelecida pela seguinte equa o:

equation=15812

Da mesma forma, a rela o que envolve o campo elétrico de uma placa infinita ($E_s$), la constante de campo elétrico ($\epsilon_0$), la constante dielétrica ($\epsilon$) e la densidade de carga por área ($\sigma$) definida como:

equation=11448

Em coordenadas esf ricas, isso expresso como:

$\varphi_s = -\displaystyle\int_0^z du \displaystyle\frac{ \sigma }{2 \epsilon_0 \epsilon }= -\displaystyle\frac{ \sigma }{2 \epsilon_0 \epsilon } z$



Finalmente, a rela o que inclui o potencial elétrico, placa infinita ($\varphi_s$) e la posição no eixo z ($z$) determinada pela seguinte equa o:

equation

No caso de uma placa infinita, a rela o entre o potencial elétrico, placa infinita ($\varphi_s$), o campo elétrico de uma placa infinita ($E_s$) e la posição no eixo z ($z$) estabelecida pela seguinte equa o:

equation=15812

Da mesma forma, a rela o que envolve o campo elétrico de uma placa infinita ($E_s$), la constante de campo elétrico ($\epsilon_0$), la constante dielétrica ($\epsilon$) e la densidade de carga por área ($\sigma$) definida como:

equation=11448

Em coordenadas esf ricas, isso expresso como:

$\varphi_s = -\displaystyle\int_0^z du \displaystyle\frac{ \sigma }{2 \epsilon_0 \epsilon }= -\displaystyle\frac{ \sigma }{2 \epsilon_0 \epsilon } z$



Finalmente, a rela o que inclui o potencial elétrico, placa infinita ($\varphi_s$) e la posição no eixo z ($z$) determinada pela seguinte equa o:

equation


Exemplos


mechanisms

De acordo com a Lei de Gauss, as vari veis la superfície na qual o campo elétrico é constante ($dS$), la charge ($Q$), la constante de campo elétrico ($\epsilon_0$), la constante dielétrica ($\epsilon$), o versor normal para seção ($\hat{n}$) e o campo elétrico ($\vec{E}$) satisfazem a seguinte equa o:

equation=3213

No caso de uma superf cie gaussiana plana, o campo deve ser constante, portanto a rela o de o campo elétrico ($E$) com la zona do condutor ($S$) estabelecida como:

equation=11456

o que mostrado no gr fico

image

Considerando que la densidade de carga por área ($\sigma$) tamb m definido pela seguinte equa o:

equation=11460

Para o campo elétrico de uma placa infinita ($E_s$), a express o resultante :

equation=11448

O potencial elétrico, duas placas infinitas ($\varphi_d$) com o campo elétrico, duas placas infinitas ($E_d$) e la posição no eixo z ($z$) igual a:

equation=11578

o campo elétrico de uma placa infinita ($E_s$) com la constante de campo elétrico ($\epsilon_0$), la constante dielétrica ($\epsilon$) e la densidade de carga por área ($\sigma$) igual a:

equation=11448

o potencial elétrico, placa infinita ($\varphi_s$) com e la posição no eixo z ($z$) acaba

equation=11586

Como ilustrado no seguinte gr fico:

image

o campo em dois pontos deve possuir a mesma energia. Portanto, as vari veis la charge ($Q$), la massa molar ($m$), la velocidade 1 ($v_1$), la velocidade 2 ($v_2$) e o potencial elétrico 1 ($\varphi_1$) conforme a equa o:

equation=11586,1

e o potencial elétrico 2 ($\varphi_2$), conforme a equa o:

equation=11586,2

devem satisfazer a seguinte rela o:

equation=11596


model

A densidade superficial de carga calculada dividindo a carga total pela rea da superf cie. Portanto, a rela o entre la densidade de carga por área ($\sigma$) e la charge ($Q$) com la zona do condutor ($S$) estabelecida como:

kyon

Os potenciais el tricos, que representam a energia potencial por unidade de carga, influenciam como a velocidade de uma part cula varia. Consequentemente, devido conserva o de energia entre dois pontos, segue-se que na presen a das vari veis la carga ($q$), la massa molar ($m$), la velocidade 1 ($v_1$), la velocidade 2 ($v_2$), o potencial elétrico 1 ($\varphi_1$) e o potencial elétrico 2 ($\varphi_2$), a seguinte rela o deve ser satisfeita:

kyon


>Modelo

ID:(2079, 0)



Mecanismos

Definição


ID:(15798, 0)



Partícula no campo elétrico de uma placa infinita

Imagem

De acordo com a Lei de Gauss, as variáveis la superfície na qual o campo elétrico é constante ($dS$), la charge ($Q$), la constante de campo elétrico ($\epsilon_0$), la constante dielétrica ($\epsilon$), o versor normal para seção ($\hat{n}$) e o campo elétrico ($\vec{E}$) satisfazem a seguinte equação:



No caso de uma superfície gaussiana plana, o campo deve ser constante, portanto a relação de o campo elétrico ($E$) com la zona do condutor ($S$) é estabelecida como:



o que é mostrado no gráfico



Considerando que la densidade de carga por área ($\sigma$) também é definido pela seguinte equação:



Para o campo elétrico de uma placa infinita ($E_s$), a expressão resultante é:

ID:(11841, 0)



Partícula em potencial elétrico de uma placa infinita

Nota

O potencial elétrico, duas placas infinitas ($\varphi_d$) é com o campo elétrico, duas placas infinitas ($E_d$) e la posição no eixo z ($z$) é igual a:



o campo elétrico de uma placa infinita ($E_s$) é com la constante de campo elétrico ($\epsilon_0$), la constante dielétrica ($\epsilon$) e la densidade de carga por área ($\sigma$) é igual a:



o potencial elétrico, placa infinita ($\varphi_s$) é com e la posição no eixo z ($z$) acaba



Como ilustrado no seguinte gráfico:



o campo em dois pontos deve possuir a mesma energia. Portanto, as variáveis la charge ($Q$), la massa molar ($m$), la velocidade 1 ($v_1$), la velocidade 2 ($v_2$) e o potencial elétrico 1 ($\varphi_1$) conforme a equação:



e o potencial elétrico 2 ($\varphi_2$), conforme a equação:



devem satisfazer a seguinte relação:

ID:(11852, 0)



Modelo

Citar


ID:(15808, 0)