Processing math: 0%
User: No user logged in.


Point charge

Storyboard

A point charge is an idealized model in physics where a charge is concentrated at a single point with no dimensions. It generates an electric field that radiates uniformly outward, decreasing in strength with the square of the distance.

>Model

ID:(2074, 0)



Mechanisms

Iframe

>Top



Code
Concept

Mechanisms

ID:(15793, 0)



Particle in electric field of point charge

Concept

>Top


In the case of a spherical Gaussian surface, the electric field (\vec{E}) is constant in the direction of the versor normal to the section (\hat{n}). Therefore, using the charge (Q), the electric field constant (\epsilon_0), and the dielectric constant (\epsilon), it can be calculated by integrating over the surface where the electric field is constant (dS):

\displaystyle\int_S\vec{E}\cdot\hat{n}\,dS=\displaystyle\frac{Q}{\epsilon_0\epsilon}



with the surface (S) for a sphere of radius a distance between charges (r):

S = 4 \pi r ^2





Thus, the electric field of a point charge (E_p) results in:

E_p =\displaystyle\frac{1}{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{Q}{ r ^2}

ID:(11835, 0)



Particle in electric potencial of point charge

Concept

>Top


The electric potential, point charge (\varphi_p) is calculated from the radial integration of the electric field of a point charge (E_p) from the radius (r) to infinity, which results in

\varphi_p = -\displaystyle\int_r^{\infty} du\,E_p



On the other hand, for the charge (Q), the dielectric constant (\epsilon), and the electric field constant (\epsilon_0), the value of the electric field of a point charge (E_p) is

E_p =\displaystyle\frac{1}{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{Q}{ r ^2}



This implies that by integrating

\varphi_p = -\displaystyle\int_{r}^{\infty} du \displaystyle\frac{ Q }{4 \pi \epsilon_0 \epsilon u^2 }= -\displaystyle\frac{ Q }{ 4 \pi \epsilon_0 \epsilon }\displaystyle\frac{1}{ r }



we obtain

\varphi_p = -\displaystyle\frac{ Q }{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{1}{ r }



As illustrated in the following graph:



the field at two points must have the same energy. Therefore, the variables the charge (Q), the particle mass (m), the speed 1 (v_1), the speed 2 (v_2), and the electric potential 1 (\varphi_1) according to the equation:

\varphi_1 = -\displaystyle\frac{ Q }{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{1}{ r_1 }



and the electric potential 2 (\varphi_2), according to the equation:

\varphi_2 = -\displaystyle\frac{ Q }{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{1}{ r_2 }



must satisfy the following relationship:

\displaystyle\frac{1}{2} m v_1 ^2 + q \varphi_1 = \displaystyle\frac{1}{2} m v_2 ^2 + q \varphi_2

ID:(11842, 0)



Model

Top

>Top



Parameters

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
\epsilon
epsilon
Dielectric constant
-
\epsilon_0
epsilon_0
Electric field constant
C^2/m^2N
m
m
Particle mass
kg
\pi
pi
Pi
rad

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
Q
Q
Charge
C
E_{p1}
E_p1
Electric field of a point charge in 1
V/m
E_{p2}
E_p2
Electric field of a point charge in 2
V/m
\varphi_1
phi_1
Electric potential 1
V
\varphi_2
phi_2
Electric potential 2
V
r_1
r_1
Radius 1
m
r_2
r_2
Radius 2
m
v_1
v_1
Speed 1
m/s
v_2
v_2
Speed 2
m/s
q
q
Test charge
C

Calculations


First, select the equation: to , then, select the variable: to
E_p1 = Q /(4 * pi * epsilon_0 * epsilon * r_1 ^2) E_p2 = Q /(4 * pi * epsilon_0 * epsilon * r_2 ^2) m * v_1 ^2/2 + q * phi_1 = m * v_2 ^2/2 + q * phi_2 phi_1 = - Q /(4 * pi * epsilon * epsilon_0 * r_1 ) phi_2 = - Q /(4 * pi * epsilon * epsilon_0 * r_2 )Qepsilonepsilon_0E_p1E_p2phi_1phi_2mpir_1r_2v_1v_2q

Calculations

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

Variable Given Calculate Target : Equation To be used
E_p1 = Q /(4 * pi * epsilon_0 * epsilon * r_1 ^2) E_p2 = Q /(4 * pi * epsilon_0 * epsilon * r_2 ^2) m * v_1 ^2/2 + q * phi_1 = m * v_2 ^2/2 + q * phi_2 phi_1 = - Q /(4 * pi * epsilon * epsilon_0 * r_1 ) phi_2 = - Q /(4 * pi * epsilon * epsilon_0 * r_2 )Qepsilonepsilon_0E_p1E_p2phi_1phi_2mpir_1r_2v_1v_2q




Equations

#
Equation

E_{p1} =\displaystyle\frac{1}{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{Q}{ r_1 ^2}

E_p = Q /(4 * pi * epsilon_0 * epsilon * r ^2)


E_{p2} =\displaystyle\frac{1}{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{Q}{ r_2 ^2}

E_p = Q /(4 * pi * epsilon_0 * epsilon * r ^2)


\displaystyle\frac{1}{2} m v_1 ^2 + q \varphi_1 = \displaystyle\frac{1}{2} m v_2 ^2 + q \varphi_2

m * v_1 ^2/2 + q * phi_1 = m * v_2 ^2/2 + q * phi_2


\varphi_1 = -\displaystyle\frac{ Q }{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{1}{ r_1 }

phi_p = - Q /(4 * pi * epsilon * epsilon_0 * r )


\varphi_2 = -\displaystyle\frac{ Q }{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{1}{ r_2 }

phi_p = - Q /(4 * pi * epsilon * epsilon_0 * r )

ID:(15803, 0)



Point charge (1)

Equation

>Top, >Model


The electric field of a point charge (E_p) is a function of the charge (Q), the electric field constant (\epsilon_0), the dielectric constant (\epsilon), and the distance between charges (r) and is calculated as follows:

E_{p1} =\displaystyle\frac{1}{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{Q}{ r_1 ^2}

E_p =\displaystyle\frac{1}{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{Q}{ r ^2}

Q
Charge
C
5459
\epsilon
Dielectric constant
-
5463
r
r_1
Radius 1
m
10390
\epsilon_0
Electric field constant
8.854187e-12
C^2/m^2N
5462
E_p
E_{p1}
Electric field of a point charge in 1
V/m
10474
\pi
Pi
3.1415927
rad
5057
E_p1 = Q /(4 * pi * epsilon_0 * epsilon * r_1 ^2) E_p2 = Q /(4 * pi * epsilon_0 * epsilon * r_2 ^2) phi_1 = - Q /(4 * pi * epsilon * epsilon_0 * r_1 ) phi_2 = - Q /(4 * pi * epsilon * epsilon_0 * r_2 ) m * v_1 ^2/2 + q * phi_1 = m * v_2 ^2/2 + q * phi_2 Qepsilonepsilon_0E_p1E_p2phi_1phi_2mpir_1r_2v_1v_2q

In the case of a spherical Gaussian surface, the electric field (\vec{E}) is constant in the direction of the versor normal to the section (\hat{n}). Therefore, using the charge (Q), the electric field constant (\epsilon_0), and the dielectric constant (\epsilon), it can be calculated by integrating over the surface where the electric field is constant (dS):

\displaystyle\int_S\vec{E}\cdot\hat{n}\,dS=\displaystyle\frac{Q}{\epsilon_0\epsilon}



with the surface (S) for a sphere of radius a distance between charges (r):

S = 4 \pi r ^2



Thus, the electric field of a point charge (E_p) results in:

E_p =\displaystyle\frac{1}{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{Q}{ r ^2}

ID:(11442, 1)



Point charge (2)

Equation

>Top, >Model


The electric field of a point charge (E_p) is a function of the charge (Q), the electric field constant (\epsilon_0), the dielectric constant (\epsilon), and the distance between charges (r) and is calculated as follows:

E_{p2} =\displaystyle\frac{1}{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{Q}{ r_2 ^2}

E_p =\displaystyle\frac{1}{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{Q}{ r ^2}

Q
Charge
C
5459
\epsilon
Dielectric constant
-
5463
r
r_2
Radius 2
m
10391
\epsilon_0
Electric field constant
8.854187e-12
C^2/m^2N
5462
E_p
E_{p2}
Electric field of a point charge in 2
V/m
10475
\pi
Pi
3.1415927
rad
5057
E_p1 = Q /(4 * pi * epsilon_0 * epsilon * r_1 ^2) E_p2 = Q /(4 * pi * epsilon_0 * epsilon * r_2 ^2) phi_1 = - Q /(4 * pi * epsilon * epsilon_0 * r_1 ) phi_2 = - Q /(4 * pi * epsilon * epsilon_0 * r_2 ) m * v_1 ^2/2 + q * phi_1 = m * v_2 ^2/2 + q * phi_2 Qepsilonepsilon_0E_p1E_p2phi_1phi_2mpir_1r_2v_1v_2q

In the case of a spherical Gaussian surface, the electric field (\vec{E}) is constant in the direction of the versor normal to the section (\hat{n}). Therefore, using the charge (Q), the electric field constant (\epsilon_0), and the dielectric constant (\epsilon), it can be calculated by integrating over the surface where the electric field is constant (dS):

\displaystyle\int_S\vec{E}\cdot\hat{n}\,dS=\displaystyle\frac{Q}{\epsilon_0\epsilon}



with the surface (S) for a sphere of radius a distance between charges (r):

S = 4 \pi r ^2



Thus, the electric field of a point charge (E_p) results in:

E_p =\displaystyle\frac{1}{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{Q}{ r ^2}

ID:(11442, 2)



Electrical potentials, point charge (1)

Equation

>Top, >Model


The electric potential, point charge (\varphi_p) is with the charge (Q), the distance between charges (r), the dielectric constant (\epsilon) and the electric field constant (\epsilon_0) equal to:

\varphi_1 = -\displaystyle\frac{ Q }{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{1}{ r_1 }

\varphi_p = -\displaystyle\frac{ Q }{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{1}{ r }

Q
Charge
C
5459
\epsilon
Dielectric constant
-
5463
r
r_1
Radius 1
m
10390
\epsilon_0
Electric field constant
8.854187e-12
C^2/m^2N
5462
\varphi_p
\varphi_1
Electric potential 1
V
10392
\pi
Pi
3.1415927
rad
5057
E_p1 = Q /(4 * pi * epsilon_0 * epsilon * r_1 ^2) E_p2 = Q /(4 * pi * epsilon_0 * epsilon * r_2 ^2) phi_1 = - Q /(4 * pi * epsilon * epsilon_0 * r_1 ) phi_2 = - Q /(4 * pi * epsilon * epsilon_0 * r_2 ) m * v_1 ^2/2 + q * phi_1 = m * v_2 ^2/2 + q * phi_2 Qepsilonepsilon_0E_p1E_p2phi_1phi_2mpir_1r_2v_1v_2q

The electric potential, point charge (\varphi_p) is calculated from the radial integration of the electric field of a point charge (E_p) from the radius (r) to infinity, which results in

\varphi_p = -\displaystyle\int_r^{\infty} du\,E_p



On the other hand, for the charge (Q), the dielectric constant (\epsilon), and the electric field constant (\epsilon_0), the value of the electric field of a point charge (E_p) is

E_p =\displaystyle\frac{1}{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{Q}{ r ^2}



This implies that by integrating

\varphi_p = -\displaystyle\int_{r}^{\infty} du \displaystyle\frac{ Q }{4 \pi \epsilon_0 \epsilon u^2 }= -\displaystyle\frac{ Q }{ 4 \pi \epsilon_0 \epsilon }\displaystyle\frac{1}{ r }



we obtain

\varphi_p = -\displaystyle\frac{ Q }{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{1}{ r }

ID:(11576, 1)



Electrical potentials, point charge (2)

Equation

>Top, >Model


The electric potential, point charge (\varphi_p) is with the charge (Q), the distance between charges (r), the dielectric constant (\epsilon) and the electric field constant (\epsilon_0) equal to:

\varphi_2 = -\displaystyle\frac{ Q }{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{1}{ r_2 }

\varphi_p = -\displaystyle\frac{ Q }{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{1}{ r }

Q
Charge
C
5459
\epsilon
Dielectric constant
-
5463
r
r_2
Radius 2
m
10391
\epsilon_0
Electric field constant
8.854187e-12
C^2/m^2N
5462
\varphi_p
\varphi_2
Electric potential 2
V
10393
\pi
Pi
3.1415927
rad
5057
E_p1 = Q /(4 * pi * epsilon_0 * epsilon * r_1 ^2) E_p2 = Q /(4 * pi * epsilon_0 * epsilon * r_2 ^2) phi_1 = - Q /(4 * pi * epsilon * epsilon_0 * r_1 ) phi_2 = - Q /(4 * pi * epsilon * epsilon_0 * r_2 ) m * v_1 ^2/2 + q * phi_1 = m * v_2 ^2/2 + q * phi_2 Qepsilonepsilon_0E_p1E_p2phi_1phi_2mpir_1r_2v_1v_2q

The electric potential, point charge (\varphi_p) is calculated from the radial integration of the electric field of a point charge (E_p) from the radius (r) to infinity, which results in

\varphi_p = -\displaystyle\int_r^{\infty} du\,E_p



On the other hand, for the charge (Q), the dielectric constant (\epsilon), and the electric field constant (\epsilon_0), the value of the electric field of a point charge (E_p) is

E_p =\displaystyle\frac{1}{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{Q}{ r ^2}



This implies that by integrating

\varphi_p = -\displaystyle\int_{r}^{\infty} du \displaystyle\frac{ Q }{4 \pi \epsilon_0 \epsilon u^2 }= -\displaystyle\frac{ Q }{ 4 \pi \epsilon_0 \epsilon }\displaystyle\frac{1}{ r }



we obtain

\varphi_p = -\displaystyle\frac{ Q }{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{1}{ r }

ID:(11576, 2)



Energy of a particle

Equation

>Top, >Model


Electric potentials, which represent potential energy per unit of charge, influence how the velocity of a particle varies. Consequently, due to the conservation of energy between two points, it follows that in the presence of variables the charge (q), the particle mass (m), the speed 1 (v_1), the speed 2 (v_2), the electric potential 1 (\varphi_1), and the electric potential 2 (\varphi_2), the following relationship must be satisfied:

\displaystyle\frac{1}{2} m v_1 ^2 + q \varphi_1 = \displaystyle\frac{1}{2} m v_2 ^2 + q \varphi_2

\varphi_1
Electric potential 1
V
10392
\varphi_2
Electric potential 2
V
10393
m
Particle mass
kg
5516
v_1
Speed 1
m/s
8562
v_2
Speed 2
m/s
8563
q
Test charge
C
8746
E_p1 = Q /(4 * pi * epsilon_0 * epsilon * r_1 ^2) E_p2 = Q /(4 * pi * epsilon_0 * epsilon * r_2 ^2) phi_1 = - Q /(4 * pi * epsilon * epsilon_0 * r_1 ) phi_2 = - Q /(4 * pi * epsilon * epsilon_0 * r_2 ) m * v_1 ^2/2 + q * phi_1 = m * v_2 ^2/2 + q * phi_2 Qepsilonepsilon_0E_p1E_p2phi_1phi_2mpir_1r_2v_1v_2q

ID:(11596, 0)