Point charge

Storyboard

A point charge is an idealized model in physics where a charge is concentrated at a single point with no dimensions. It generates an electric field that radiates uniformly outward, decreasing in strength with the square of the distance.

>Model

ID:(2074, 0)



Mechanisms

Iframe

>Top



Code
Concept

Mechanisms

ID:(15793, 0)



Particle in electric field of point charge

Concept

>Top


In the case of a spherical Gaussian surface, the electric field ($\vec{E}$) is constant in the direction of the versor normal to the section ($\hat{n}$). Therefore, using the charge ($Q$), the electric field constant ($\epsilon_0$), and the dielectric constant ($\epsilon$), it can be calculated by integrating over the surface where the electric field is constant ($dS$):

$\displaystyle\int_S\vec{E}\cdot\hat{n}\,dS=\displaystyle\frac{Q}{\epsilon_0\epsilon}$



with the surface ($S$) for a sphere of radius a distance between charges ($r$):

$ S = 4 \pi r ^2$





Thus, the electric field of a point charge ($E_p$) results in:

$ E_p =\displaystyle\frac{1}{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{Q}{ r ^2}$

ID:(11835, 0)



Particle in electric potencial of point charge

Concept

>Top


The electric potential, point charge ($\varphi_p$) is calculated from the radial integration of the electric field of a point charge ($E_p$) from the radius ($r$) to infinity, which results in

$ \varphi_p = -\displaystyle\int_r^{\infty} du\,E_p$



On the other hand, for the charge ($Q$), the dielectric constant ($\epsilon$), and the electric field constant ($\epsilon_0$), the value of the electric field of a point charge ($E_p$) is

$ E_p =\displaystyle\frac{1}{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{Q}{ r ^2}$



This implies that by integrating

$\varphi_p = -\displaystyle\int_{r}^{\infty} du \displaystyle\frac{ Q }{4 \pi \epsilon_0 \epsilon u^2 }= -\displaystyle\frac{ Q }{ 4 \pi \epsilon_0 \epsilon }\displaystyle\frac{1}{ r }$



we obtain

$ \varphi_p = -\displaystyle\frac{ Q }{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{1}{ r } $



As illustrated in the following graph:



the field at two points must have the same energy. Therefore, the variables the charge ($Q$), the particle mass ($m$), the speed 1 ($v_1$), the speed 2 ($v_2$), and the electric potential 1 ($\varphi_1$) according to the equation:

$ \varphi_1 = -\displaystyle\frac{ Q }{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{1}{ r_1 } $



and the electric potential 2 ($\varphi_2$), according to the equation:

$ \varphi_2 = -\displaystyle\frac{ Q }{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{1}{ r_2 } $



must satisfy the following relationship:

$ \displaystyle\frac{1}{2} m v_1 ^2 + Q \varphi_1 = \displaystyle\frac{1}{2} m v_2 ^2 + Q \varphi_2 $

ID:(11842, 0)



Model

Top

>Top



Parameters

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$\epsilon$
epsilon
Dielectric constant
-
$\epsilon_0$
epsilon_0
Electric field constant
C^2/m^2N
$m$
m
Particle mass
kg
$\pi$
pi
Pi
rad

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$Q$
Q
Charge
C
$r$
r
Distance between charges
m
$E_p$
E_p
Electric field of a point charge
V/m
$\varphi_1$
phi_1
Electric potential 1
V
$\varphi_2$
phi_2
Electric potential 2
V
$\varphi_p$
phi_p
Electric potential, point charge
V
$r$
r
Radius
m
$r_1$
r_1
Radius 1
m
$r_2$
r_2
Radius 2
m
$v_1$
v_1
Speed 1
m/s
$v_2$
v_2
Speed 2
m/s

Calculations


First, select the equation: to , then, select the variable: to

Calculations

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

Variable Given Calculate Target : Equation To be used




Equations

#
Equation

$ E_p =\displaystyle\frac{1}{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{Q}{ r ^2}$

E_p = Q /(4 * pi * epsilon_0 * epsilon * r ^2)


$ \displaystyle\frac{1}{2} m v_1 ^2 + Q \varphi_1 = \displaystyle\frac{1}{2} m v_2 ^2 + Q \varphi_2 $

m * v_1 ^2/2 + Q * phi_1 = m * v_2 ^2/2 + Q * phi_2


$ \varphi_p = -\displaystyle\frac{ Q }{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{1}{ r } $

phi_p = - Q /(4 * pi * epsilon * epsilon_0 * r )


$ \varphi_1 = -\displaystyle\frac{ Q }{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{1}{ r_1 } $

phi_p = - Q /(4 * pi * epsilon * epsilon_0 * r )


$ \varphi_2 = -\displaystyle\frac{ Q }{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{1}{ r_2 } $

phi_p = - Q /(4 * pi * epsilon * epsilon_0 * r )


$ \varphi_p = -\displaystyle\int_r^{\infty} du\,E_p$

phi_p = -@INT( E_p , u , r , infty )

ID:(15803, 0)



Point charge

Equation

>Top, >Model


The electric field of a point charge ($E_p$) is a function of the charge ($Q$), the electric field constant ($\epsilon_0$), the dielectric constant ($\epsilon$), and the distance between charges ($r$) and is calculated as follows:

$ E_p =\displaystyle\frac{1}{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{Q}{ r ^2}$

$Q$
Charge
$C$
5459
$\epsilon$
Dielectric constant
$-$
5463
$r$
Distance between charges
$m$
5467
$\epsilon_0$
Electric field constant
8.854187e-12
$C^2/m^2N$
5462
$E_p$
Electric field of a point charge
$V/m$
8527
$\pi$
Pi
3.1415927
$rad$
5057

In the case of a spherical Gaussian surface, the electric field ($\vec{E}$) is constant in the direction of the versor normal to the section ($\hat{n}$). Therefore, using the charge ($Q$), the electric field constant ($\epsilon_0$), and the dielectric constant ($\epsilon$), it can be calculated by integrating over the surface where the electric field is constant ($dS$):

$\displaystyle\int_S\vec{E}\cdot\hat{n}\,dS=\displaystyle\frac{Q}{\epsilon_0\epsilon}$



with the surface ($S$) for a sphere of radius a distance between charges ($r$):

$ S = 4 \pi r ^2$



Thus, the electric field of a point charge ($E_p$) results in:

$ E_p =\displaystyle\frac{1}{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{Q}{ r ^2}$

ID:(11442, 0)



Spherical geometry, point charge

Equation

>Top, >Model


The electric potential, point charge ($\varphi_p$) is equal to the radial integral of the electric field of a point charge ($E_p$) since the radius ($r$) is:

$ \varphi_p = -\displaystyle\int_r^{\infty} du\,E_p$

$E_p$
Electric field of a point charge
$V/m$
8527
$\varphi_p$
Electric potential, point charge
$V$
8555
$r$
Radius
$m$
8755

The electric potential ($\varphi$), in the case of a spherical geometry, is equal to the base electrical potential ($\varphi_0$) plus the path integral of the electric field ($\vec{E}$) dot product with the infinitesimal distance ($ds$):

$ \varphi =\varphi_0 - \displaystyle\int_C \vec{E}\cdot d\vec{s}$



Since the field is radial and inversely proportional to the square of the radius ($r$)

$E_p \propto \displaystyle\frac{1}{r^2}$



the simplest path is the radial one. However, the reference potential cannot be at the origin since at that point the integral is infinite. Therefore, the reference potential must be referred to an infinite radius ($r \rightarrow \infty$) and can be chosen as zero ($\varphi_0 = 0$), so:

$ \varphi_p = -\displaystyle\int_r^{\infty} du\,E_p$

ID:(11581, 0)



Electrical potentials, point charge

Equation

>Top, >Model


The electric potential, point charge ($\varphi_p$) is with the charge ($Q$), the distance between charges ($r$), the dielectric constant ($\epsilon$) and the electric field constant ($\epsilon_0$) equal to:

$ \varphi_p = -\displaystyle\frac{ Q }{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{1}{ r } $

$Q$
Charge
$C$
5459
$\epsilon$
Dielectric constant
$-$
5463
$r$
Distance between charges
$m$
5467
$\epsilon_0$
Electric field constant
8.854187e-12
$C^2/m^2N$
5462
$\varphi_p$
Electric potential, point charge
$V$
8555
$\pi$
Pi
3.1415927
$rad$
5057

The electric potential, point charge ($\varphi_p$) is calculated from the radial integration of the electric field of a point charge ($E_p$) from the radius ($r$) to infinity, which results in

$ \varphi_p = -\displaystyle\int_r^{\infty} du\,E_p$



On the other hand, for the charge ($Q$), the dielectric constant ($\epsilon$), and the electric field constant ($\epsilon_0$), the value of the electric field of a point charge ($E_p$) is

$ E_p =\displaystyle\frac{1}{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{Q}{ r ^2}$



This implies that by integrating

$\varphi_p = -\displaystyle\int_{r}^{\infty} du \displaystyle\frac{ Q }{4 \pi \epsilon_0 \epsilon u^2 }= -\displaystyle\frac{ Q }{ 4 \pi \epsilon_0 \epsilon }\displaystyle\frac{1}{ r }$



we obtain

$ \varphi_p = -\displaystyle\frac{ Q }{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{1}{ r } $

ID:(11576, 0)



Electrical potentials, point charge (1)

Equation

>Top, >Model


The electric potential, point charge ($\varphi_p$) is with the charge ($Q$), the distance between charges ($r$), the dielectric constant ($\epsilon$) and the electric field constant ($\epsilon_0$) equal to:

$ \varphi_1 = -\displaystyle\frac{ Q }{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{1}{ r_1 } $

$ \varphi_p = -\displaystyle\frac{ Q }{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{1}{ r } $

$Q$
Charge
$C$
5459
$\epsilon$
Dielectric constant
$-$
5463
$r$
$r_1$
Radius 1
$m$
10390
$\epsilon_0$
Electric field constant
8.854187e-12
$C^2/m^2N$
5462
$\varphi_p$
$\varphi_1$
Electric potential 1
$V$
10392
$\pi$
Pi
3.1415927
$rad$
5057

The electric potential, point charge ($\varphi_p$) is calculated from the radial integration of the electric field of a point charge ($E_p$) from the radius ($r$) to infinity, which results in

$ \varphi_p = -\displaystyle\int_r^{\infty} du\,E_p$



On the other hand, for the charge ($Q$), the dielectric constant ($\epsilon$), and the electric field constant ($\epsilon_0$), the value of the electric field of a point charge ($E_p$) is

$ E_p =\displaystyle\frac{1}{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{Q}{ r ^2}$



This implies that by integrating

$\varphi_p = -\displaystyle\int_{r}^{\infty} du \displaystyle\frac{ Q }{4 \pi \epsilon_0 \epsilon u^2 }= -\displaystyle\frac{ Q }{ 4 \pi \epsilon_0 \epsilon }\displaystyle\frac{1}{ r }$



we obtain

$ \varphi_p = -\displaystyle\frac{ Q }{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{1}{ r } $

ID:(11576, 1)



Electrical potentials, point charge (2)

Equation

>Top, >Model


The electric potential, point charge ($\varphi_p$) is with the charge ($Q$), the distance between charges ($r$), the dielectric constant ($\epsilon$) and the electric field constant ($\epsilon_0$) equal to:

$ \varphi_2 = -\displaystyle\frac{ Q }{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{1}{ r_2 } $

$ \varphi_p = -\displaystyle\frac{ Q }{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{1}{ r } $

$Q$
Charge
$C$
5459
$\epsilon$
Dielectric constant
$-$
5463
$r$
$r_2$
Radius 2
$m$
10391
$\epsilon_0$
Electric field constant
8.854187e-12
$C^2/m^2N$
5462
$\varphi_p$
$\varphi_2$
Electric potential 2
$V$
10393
$\pi$
Pi
3.1415927
$rad$
5057

The electric potential, point charge ($\varphi_p$) is calculated from the radial integration of the electric field of a point charge ($E_p$) from the radius ($r$) to infinity, which results in

$ \varphi_p = -\displaystyle\int_r^{\infty} du\,E_p$



On the other hand, for the charge ($Q$), the dielectric constant ($\epsilon$), and the electric field constant ($\epsilon_0$), the value of the electric field of a point charge ($E_p$) is

$ E_p =\displaystyle\frac{1}{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{Q}{ r ^2}$



This implies that by integrating

$\varphi_p = -\displaystyle\int_{r}^{\infty} du \displaystyle\frac{ Q }{4 \pi \epsilon_0 \epsilon u^2 }= -\displaystyle\frac{ Q }{ 4 \pi \epsilon_0 \epsilon }\displaystyle\frac{1}{ r }$



we obtain

$ \varphi_p = -\displaystyle\frac{ Q }{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{1}{ r } $

ID:(11576, 2)



Energy of a particle

Equation

>Top, >Model


Electric potentials, which represent potential energy per unit of charge, influence how the velocity of a particle varies. Consequently, due to the conservation of energy between two points, it follows that in the presence of variables the charge ($Q$), the particle mass ($m$), the speed 1 ($v_1$), the speed 2 ($v_2$), the electric potential 1 ($\varphi_1$), and the electric potential 2 ($\varphi_2$), the following relationship must be satisfied:

$ \displaystyle\frac{1}{2} m v_1 ^2 + Q \varphi_1 = \displaystyle\frac{1}{2} m v_2 ^2 + Q \varphi_2 $

$Q$
Charge
$C$
5459
$\varphi_1$
Electric potential 1
$V$
10392
$\varphi_2$
Electric potential 2
$V$
10393
$m$
Particle mass
$kg$
5516
$v_1$
Speed 1
$m/s$
8562
$v_2$
Speed 2
$m/s$
8563

ID:(11596, 0)