Interior of an insulating sphere

Storyboard

In the case of an insulating sphere with a homogeneous charge distribution, the charges cannot move. The electric field can be calculated by assuming spherical symmetry and defining the Gaussian surface as a sphere with a given radius. In this way, the electric field and potential will depend on the charge enclosed by this surface.

>Model

ID:(2077, 0)



Mechanisms

Iframe

>Top



Code
Concept

Mechanisms

ID:(15796, 0)



Particle in electric field of an sphere, internal

Concept

>Top


In the case of a spherical Gaussian surface, the electric field ($\vec{E}$) is constant in the direction of the versor normal to the section ($\hat{n}$). Therefore, using the charge ($Q$), the electric field constant ($\epsilon_0$), and the dielectric constant ($\epsilon$), it can be calculated by integrating over the surface where the electric field is constant ($dS$):

$\displaystyle\int_S\vec{E}\cdot\hat{n}\,dS=\displaystyle\frac{Q}{\epsilon_0\epsilon}$



Since the surface area of the surface of a sphere ($S$) is equal to the pi ($\pi$) and the disc radius ($r$), we have:

$ S = 4 \pi r ^2$




what is shown in the graph



the encapsulated charge on Gauss surface ($q$) with a radius equal to the distance between charges ($r$) and the sphere radius ($R$) with the charge ($Q$) so that:

$ q =\displaystyle\frac{ r ^3}{ R ^3} Q $



For the electric field, sphere, interior ($E_i$), the resulting expression is:

$ E_i =\displaystyle\frac{1}{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{ Q r }{ R ^3 }$

ID:(11840, 0)



Particle in electric potencial of an sphere, internal

Concept

>Top


As the potential difference is the reference electrical, insulating sphere, inner ($\varphi_i$) with the electric field, sphere, interior ($E_i$) and the radius ($r$), we get:

$ \varphi_i = -\displaystyle\int_0^ r du\, E_i $



Given that the electric field, sphere, interior ($E_i$) with the pi ($\pi$), the charge ($Q$), the electric field constant ($\epsilon_0$), the dielectric constant ($\epsilon$), the sphere radius ($R$), and the distance between charges ($r$) is equal to:

$ E_i =\displaystyle\frac{1}{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{ Q r }{ R ^3 }$



In spherical coordinates, this is:

$\varphi_i = -\displaystyle\int_0^{r} du \displaystyle\frac{ Q u }{4 \pi \epsilon_0 \epsilon R ^3 }= -\displaystyle\frac{ Q }{ 8 \pi \epsilon_0 \epsilon }\displaystyle\frac{ r ^2 }{ R ^3 }$



Therefore, the reference electrical, insulating sphere, inner ($\varphi_i$) with the distance between charges ($r$) results in:

$ \varphi_i = -\displaystyle\frac{ Q }{8 \pi \epsilon_0 \epsilon }\displaystyle\frac{ r ^2 }{ R ^3 }$



As illustrated in the following graph:



the field at two points must have the same energy. Therefore, the variables the charge ($Q$), the particle mass ($m$), the speed 1 ($v_1$), the speed 2 ($v_2$), and the electric potential 1 ($\varphi_1$) according to the equation:

$ \varphi_1 = -\displaystyle\frac{ Q }{8 \pi \epsilon_0 \epsilon }\displaystyle\frac{ r_1 ^2 }{ R ^3 }$



and the electric potential 2 ($\varphi_2$), according to the equation:

$ \varphi_2 = -\displaystyle\frac{ Q }{8 \pi \epsilon_0 \epsilon }\displaystyle\frac{ r_2 ^2 }{ R ^3 }$



must satisfy the following relationship:

$ \displaystyle\frac{1}{2} m v_1 ^2 + q \varphi_1 = \displaystyle\frac{1}{2} m v_2 ^2 + q \varphi_2 $

ID:(11847, 0)



Model

Top

>Top



Parameters

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$\epsilon$
epsilon
Dielectric constant
-
$\epsilon_0$
epsilon_0
Electric field constant
C^2/m^2N
$m$
m
Particle mass
kg
$\pi$
pi
Pi
rad
$R$
R
Sphere radius
m

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$Q$
Q
Charge
C
$E_{i1}$
E_i1
Electric field, sphere, interior in 1
V/m
$E_{i2}$
E_i2
Electric field, sphere, interior in 2
V/m
$\varphi_1$
phi_1
Electric potential 1
V
$\varphi_2$
phi_2
Electric potential 2
V
$q_1$
q_1
Encapsulated charge on Gauss surface in 1
C
$q_2$
q_2
Encapsulated charge on Gauss surface in 2
C
$r_1$
r_1
Radius 1
m
$r_2$
r_2
Radius 2
m
$v_1$
v_1
Speed 1
m/s
$v_2$
v_2
Speed 2
m/s
$q$
q
Test charge
C

Calculations


First, select the equation: to , then, select the variable: to

Calculations

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

Variable Given Calculate Target : Equation To be used




Equations

#
Equation

$ E_{i1} =\displaystyle\frac{1}{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{ Q r_1 }{ R ^3 }$

E_i = Q * r /(4 * pi * epsilon_0 * epsilon * R ^3)


$ E_{i2} =\displaystyle\frac{1}{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{ Q r_2 }{ R ^3 }$

E_i = Q * r /(4 * pi * epsilon_0 * epsilon * R ^3)


$ \displaystyle\frac{1}{2} m v_1 ^2 + q \varphi_1 = \displaystyle\frac{1}{2} m v_2 ^2 + q \varphi_2 $

m * v_1 ^2/2 + q * phi_1 = m * v_2 ^2/2 + q * phi_2


$ \varphi_1 = -\displaystyle\frac{ Q }{8 \pi \epsilon_0 \epsilon }\displaystyle\frac{ r_1 ^2 }{ R ^3 }$

phi_i =- Q * r ^2/(8 * pi * epsilon * epsilon_0 * R ^3)


$ \varphi_2 = -\displaystyle\frac{ Q }{8 \pi \epsilon_0 \epsilon }\displaystyle\frac{ r_2 ^2 }{ R ^3 }$

phi_i =- Q * r ^2/(8 * pi * epsilon * epsilon_0 * R ^3)


$ q_1 =\displaystyle\frac{ r_1 ^3}{ R ^3} Q $

q = r ^3* Q / R ^3


$ q_2 =\displaystyle\frac{ r_2 ^3}{ R ^3} Q $

q = r ^3* Q / R ^3

ID:(15806, 0)



Charge fraction (1)

Equation

>Top, >Model


In the case of a the sphere radius ($R$) sphere with homogeneous charge, the Gaussian surface for the distance between charges ($r$) includes the encapsulated charge on Gauss surface ($q$) for the charge ($Q$) :

$ q_1 =\displaystyle\frac{ r_1 ^3}{ R ^3} Q $

$ q =\displaystyle\frac{ r ^3}{ R ^3} Q $

$Q$
Charge
$C$
5459
$r$
$r_1$
Radius 1
$m$
10390
$q$
$q_1$
Encapsulated charge on Gauss surface in 1
$C$
10480
$R$
Sphere radius
$m$
8541

ID:(11461, 1)



Insulating sphere with full volume charge, interior (1)

Equation

>Top, >Model


The electric field, sphere, interior ($E_i$) is with the pi ($\pi$), the charge ($Q$), the electric field constant ($\epsilon_0$), the dielectric constant ($\epsilon$), the sphere radius ($R$) and the distance between charges ($r$) is equal to:

$ E_{i1} =\displaystyle\frac{1}{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{ Q r_1 }{ R ^3 }$

$ E_i =\displaystyle\frac{1}{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{ Q r }{ R ^3 }$

$Q$
Charge
$C$
5459
$\epsilon$
Dielectric constant
$-$
5463
$r$
$r_1$
Radius 1
$m$
10390
$\epsilon_0$
Electric field constant
8.854187e-12
$C^2/m^2N$
5462
$E_i$
$E_{i1}$
Electric field, sphere, interior in 1
$V/m$
10482
$\pi$
Pi
3.1415927
$rad$
5057
$R$
Sphere radius
$m$
8541

Considering a spherical Gaussian surface, the electric field is constant. Therefore, the electric eield ($E$) is equal to the charge ($Q$), the electric field constant ($\epsilon_0$), the dielectric constant ($\epsilon$), and the surface of the conductor ($S$) as shown by:

$ E S = \displaystyle\frac{ Q }{ \epsilon_0 \epsilon }$



Since the surface area of the surface of a sphere ($S$) is equal to the pi ($\pi$) and the disc radius ($r$), we have:

$ S = 4 \pi r ^2$



The charge enclosed by the Gaussian surface, with the encapsulated charge on Gauss surface ($q$), the sphere radius ($R$), and the distance between charges ($r$), is given by:

$ q =\displaystyle\frac{ r ^3}{ R ^3} Q $



Therefore, the electric field, sphere, interior ($E_i$) results in:

$ E_i =\displaystyle\frac{1}{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{ Q r }{ R ^3 }$

ID:(11447, 1)



Charge fraction (2)

Equation

>Top, >Model


In the case of a the sphere radius ($R$) sphere with homogeneous charge, the Gaussian surface for the distance between charges ($r$) includes the encapsulated charge on Gauss surface ($q$) for the charge ($Q$) :

$ q_2 =\displaystyle\frac{ r_2 ^3}{ R ^3} Q $

$ q =\displaystyle\frac{ r ^3}{ R ^3} Q $

$Q$
Charge
$C$
5459
$r$
$r_2$
Radius 2
$m$
10391
$q$
$q_2$
Encapsulated charge on Gauss surface in 2
$C$
10481
$R$
Sphere radius
$m$
8541

ID:(11461, 2)



Insulating sphere with full volume charge, interior (2)

Equation

>Top, >Model


The electric field, sphere, interior ($E_i$) is with the pi ($\pi$), the charge ($Q$), the electric field constant ($\epsilon_0$), the dielectric constant ($\epsilon$), the sphere radius ($R$) and the distance between charges ($r$) is equal to:

$ E_{i2} =\displaystyle\frac{1}{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{ Q r_2 }{ R ^3 }$

$ E_i =\displaystyle\frac{1}{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{ Q r }{ R ^3 }$

$Q$
Charge
$C$
5459
$\epsilon$
Dielectric constant
$-$
5463
$r$
$r_2$
Radius 2
$m$
10391
$\epsilon_0$
Electric field constant
8.854187e-12
$C^2/m^2N$
5462
$E_i$
$E_{i2}$
Electric field, sphere, interior in 2
$V/m$
10483
$\pi$
Pi
3.1415927
$rad$
5057
$R$
Sphere radius
$m$
8541

Considering a spherical Gaussian surface, the electric field is constant. Therefore, the electric eield ($E$) is equal to the charge ($Q$), the electric field constant ($\epsilon_0$), the dielectric constant ($\epsilon$), and the surface of the conductor ($S$) as shown by:

$ E S = \displaystyle\frac{ Q }{ \epsilon_0 \epsilon }$



Since the surface area of the surface of a sphere ($S$) is equal to the pi ($\pi$) and the disc radius ($r$), we have:

$ S = 4 \pi r ^2$



The charge enclosed by the Gaussian surface, with the encapsulated charge on Gauss surface ($q$), the sphere radius ($R$), and the distance between charges ($r$), is given by:

$ q =\displaystyle\frac{ r ^3}{ R ^3} Q $



Therefore, the electric field, sphere, interior ($E_i$) results in:

$ E_i =\displaystyle\frac{1}{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{ Q r }{ R ^3 }$

ID:(11447, 2)



Calculation of electric potential with spherical geometry, internal (1)

Equation

>Top, >Model


The reference electrical, insulating sphere, inner ($\varphi_i$) is with the pi ($\pi$), the charge ($Q$), the electric field constant ($\epsilon_0$), the dielectric constant ($\epsilon$), the distance between charges ($r$) and the sphere radius ($R$) is equal to:

$ \varphi_1 = -\displaystyle\frac{ Q }{8 \pi \epsilon_0 \epsilon }\displaystyle\frac{ r_1 ^2 }{ R ^3 }$

$ \varphi_i = -\displaystyle\frac{ Q }{8 \pi \epsilon_0 \epsilon }\displaystyle\frac{ r ^2 }{ R ^3 }$

$Q$
Charge
$C$
5459
$\epsilon$
Dielectric constant
$-$
5463
$r$
$r_1$
Radius 1
$m$
10390
$\epsilon_0$
Electric field constant
8.854187e-12
$C^2/m^2N$
5462
$\pi$
Pi
3.1415927
$rad$
5057
$\varphi_i$
$\varphi_1$
Electric potential 1
$V$
10392
$R$
Sphere radius
$m$
8541

As the potential difference is the reference electrical, insulating sphere, inner ($\varphi_i$) with the electric field, sphere, interior ($E_i$) and the radius ($r$), we get:

$ \varphi_i = -\displaystyle\int_0^ r du\, E_i $



Given that the electric field, sphere, interior ($E_i$) with the pi ($\pi$), the charge ($Q$), the electric field constant ($\epsilon_0$), the dielectric constant ($\epsilon$), the sphere radius ($R$), and the distance between charges ($r$) is equal to:

$ E_i =\displaystyle\frac{1}{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{ Q r }{ R ^3 }$



In spherical coordinates, this is:

$\varphi_i = -\displaystyle\int_0^{r} du \displaystyle\frac{ Q u }{4 \pi \epsilon_0 \epsilon R ^3 }= -\displaystyle\frac{ Q }{ 8 \pi \epsilon_0 \epsilon }\displaystyle\frac{ r ^2 }{ R ^3 }$



Therefore, the reference electrical, insulating sphere, inner ($\varphi_i$) with the distance between charges ($r$) results in:

$ \varphi_i = -\displaystyle\frac{ Q }{8 \pi \epsilon_0 \epsilon }\displaystyle\frac{ r ^2 }{ R ^3 }$

ID:(11583, 1)



Calculation of electric potential with spherical geometry, internal (2)

Equation

>Top, >Model


The reference electrical, insulating sphere, inner ($\varphi_i$) is with the pi ($\pi$), the charge ($Q$), the electric field constant ($\epsilon_0$), the dielectric constant ($\epsilon$), the distance between charges ($r$) and the sphere radius ($R$) is equal to:

$ \varphi_2 = -\displaystyle\frac{ Q }{8 \pi \epsilon_0 \epsilon }\displaystyle\frac{ r_2 ^2 }{ R ^3 }$

$ \varphi_i = -\displaystyle\frac{ Q }{8 \pi \epsilon_0 \epsilon }\displaystyle\frac{ r ^2 }{ R ^3 }$

$Q$
Charge
$C$
5459
$\epsilon$
Dielectric constant
$-$
5463
$r$
$r_2$
Radius 2
$m$
10391
$\epsilon_0$
Electric field constant
8.854187e-12
$C^2/m^2N$
5462
$\pi$
Pi
3.1415927
$rad$
5057
$\varphi_i$
$\varphi_2$
Electric potential 2
$V$
10393
$R$
Sphere radius
$m$
8541

As the potential difference is the reference electrical, insulating sphere, inner ($\varphi_i$) with the electric field, sphere, interior ($E_i$) and the radius ($r$), we get:

$ \varphi_i = -\displaystyle\int_0^ r du\, E_i $



Given that the electric field, sphere, interior ($E_i$) with the pi ($\pi$), the charge ($Q$), the electric field constant ($\epsilon_0$), the dielectric constant ($\epsilon$), the sphere radius ($R$), and the distance between charges ($r$) is equal to:

$ E_i =\displaystyle\frac{1}{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{ Q r }{ R ^3 }$



In spherical coordinates, this is:

$\varphi_i = -\displaystyle\int_0^{r} du \displaystyle\frac{ Q u }{4 \pi \epsilon_0 \epsilon R ^3 }= -\displaystyle\frac{ Q }{ 8 \pi \epsilon_0 \epsilon }\displaystyle\frac{ r ^2 }{ R ^3 }$



Therefore, the reference electrical, insulating sphere, inner ($\varphi_i$) with the distance between charges ($r$) results in:

$ \varphi_i = -\displaystyle\frac{ Q }{8 \pi \epsilon_0 \epsilon }\displaystyle\frac{ r ^2 }{ R ^3 }$

ID:(11583, 2)



Energy of a particle

Equation

>Top, >Model


Electric potentials, which represent potential energy per unit of charge, influence how the velocity of a particle varies. Consequently, due to the conservation of energy between two points, it follows that in the presence of variables the charge ($q$), the particle mass ($m$), the speed 1 ($v_1$), the speed 2 ($v_2$), the electric potential 1 ($\varphi_1$), and the electric potential 2 ($\varphi_2$), the following relationship must be satisfied:

$ \displaystyle\frac{1}{2} m v_1 ^2 + q \varphi_1 = \displaystyle\frac{1}{2} m v_2 ^2 + q \varphi_2 $

$\varphi_1$
Electric potential 1
$V$
10392
$\varphi_2$
Electric potential 2
$V$
10393
$m$
Particle mass
$kg$
5516
$v_1$
Speed 1
$m/s$
8562
$v_2$
Speed 2
$m/s$
8563
$q$
Test charge
$C$
8746

ID:(11596, 0)