Processing math: 100%
User: No user logged in.


Interior of an insulating sphere

Storyboard

In the case of an insulating sphere with a homogeneous charge distribution, the charges cannot move. The electric field can be calculated by assuming spherical symmetry and defining the Gaussian surface as a sphere with a given radius. In this way, the electric field and potential will depend on the charge enclosed by this surface.

>Model

ID:(2077, 0)



Mechanisms

Iframe

>Top



Code
Concept

Mechanisms

ID:(15796, 0)



Particle in electric field of an sphere, internal

Concept

>Top


In the case of a spherical Gaussian surface, the electric field (\vec{E}) is constant in the direction of the versor normal to the section (\hat{n}). Therefore, using the charge (Q), the electric field constant (\epsilon_0), and the dielectric constant (\epsilon), it can be calculated by integrating over the surface where the electric field is constant (dS):

\displaystyle\int_S\vec{E}\cdot\hat{n}\,dS=\displaystyle\frac{Q}{\epsilon_0\epsilon}



Since the surface area of the surface of a sphere (S) is equal to the pi (\pi) and the disc radius (r), we have:

S = 4 \pi r ^2




what is shown in the graph



the encapsulated charge on Gauss surface (q) with a radius equal to the distance between charges (r) and the sphere radius (R) with the charge (Q) so that:

q =\displaystyle\frac{ r ^3}{ R ^3} Q



For the electric field, sphere, interior (E_i), the resulting expression is:

E_i =\displaystyle\frac{1}{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{ Q r }{ R ^3 }

ID:(11840, 0)



Particle in electric potencial of an sphere, internal

Concept

>Top


As the potential difference is the reference electrical, insulating sphere, inner (\varphi_i) with the electric field, sphere, interior (E_i) and the radius (r), we get:

\varphi_i = -\displaystyle\int_0^ r du\, E_i



Given that the electric field, sphere, interior (E_i) with the pi (\pi), the charge (Q), the electric field constant (\epsilon_0), the dielectric constant (\epsilon), the sphere radius (R), and the distance between charges (r) is equal to:

E_i =\displaystyle\frac{1}{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{ Q r }{ R ^3 }



In spherical coordinates, this is:

\varphi_i = -\displaystyle\int_0^{r} du \displaystyle\frac{ Q u }{4 \pi \epsilon_0 \epsilon R ^3 }= -\displaystyle\frac{ Q }{ 8 \pi \epsilon_0 \epsilon }\displaystyle\frac{ r ^2 }{ R ^3 }



Therefore, the reference electrical, insulating sphere, inner (\varphi_i) with the distance between charges (r) results in:

\varphi_i = -\displaystyle\frac{ Q }{8 \pi \epsilon_0 \epsilon }\displaystyle\frac{ r ^2 }{ R ^3 }



As illustrated in the following graph:



the field at two points must have the same energy. Therefore, the variables the charge (Q), the particle mass (m), the speed 1 (v_1), the speed 2 (v_2), and the electric potential 1 (\varphi_1) according to the equation:

\varphi_1 = -\displaystyle\frac{ Q }{8 \pi \epsilon_0 \epsilon }\displaystyle\frac{ r_1 ^2 }{ R ^3 }



and the electric potential 2 (\varphi_2), according to the equation:

\varphi_2 = -\displaystyle\frac{ Q }{8 \pi \epsilon_0 \epsilon }\displaystyle\frac{ r_2 ^2 }{ R ^3 }



must satisfy the following relationship:

\displaystyle\frac{1}{2} m v_1 ^2 + q \varphi_1 = \displaystyle\frac{1}{2} m v_2 ^2 + q \varphi_2

ID:(11847, 0)



Model

Top

>Top



Parameters

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
\epsilon
epsilon
Dielectric constant
-
\epsilon_0
epsilon_0
Electric field constant
C^2/m^2N
m
m
Particle mass
kg
\pi
pi
Pi
rad
R
R
Sphere radius
m

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
Q
Q
Charge
C
E_{i1}
E_i1
Electric field, sphere, interior in 1
V/m
E_{i2}
E_i2
Electric field, sphere, interior in 2
V/m
\varphi_1
phi_1
Electric potential 1
V
\varphi_2
phi_2
Electric potential 2
V
q_1
q_1
Encapsulated charge on Gauss surface in 1
C
q_2
q_2
Encapsulated charge on Gauss surface in 2
C
r_1
r_1
Radius 1
m
r_2
r_2
Radius 2
m
v_1
v_1
Speed 1
m/s
v_2
v_2
Speed 2
m/s
q
q
Test charge
C

Calculations


First, select the equation: to , then, select the variable: to
E_i1 = Q * r_1 /(4 * pi * epsilon_0 * epsilon * R ^3) E_i2 = Q * r_2 /(4 * pi * epsilon_0 * epsilon * R ^3) m * v_1 ^2/2 + q * phi_1 = m * v_2 ^2/2 + q * phi_2 phi_1 =- Q * r_1 ^2/(8 * pi * epsilon * epsilon_0 * R ^3) phi_2 =- Q * r_2 ^2/(8 * pi * epsilon * epsilon_0 * R ^3) q_1 = r_1 ^3* Q / R ^3 q_2 = r_2 ^3* Q / R ^3 Qepsilonepsilon_0E_i1E_i2phi_1phi_2q_1q_2mpir_1r_2v_1v_2Rq

Calculations

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

Variable Given Calculate Target : Equation To be used
E_i1 = Q * r_1 /(4 * pi * epsilon_0 * epsilon * R ^3) E_i2 = Q * r_2 /(4 * pi * epsilon_0 * epsilon * R ^3) m * v_1 ^2/2 + q * phi_1 = m * v_2 ^2/2 + q * phi_2 phi_1 =- Q * r_1 ^2/(8 * pi * epsilon * epsilon_0 * R ^3) phi_2 =- Q * r_2 ^2/(8 * pi * epsilon * epsilon_0 * R ^3) q_1 = r_1 ^3* Q / R ^3 q_2 = r_2 ^3* Q / R ^3 Qepsilonepsilon_0E_i1E_i2phi_1phi_2q_1q_2mpir_1r_2v_1v_2Rq




Equations

#
Equation

E_{i1} =\displaystyle\frac{1}{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{ Q r_1 }{ R ^3 }

E_i = Q * r /(4 * pi * epsilon_0 * epsilon * R ^3)


E_{i2} =\displaystyle\frac{1}{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{ Q r_2 }{ R ^3 }

E_i = Q * r /(4 * pi * epsilon_0 * epsilon * R ^3)


\displaystyle\frac{1}{2} m v_1 ^2 + q \varphi_1 = \displaystyle\frac{1}{2} m v_2 ^2 + q \varphi_2

m * v_1 ^2/2 + q * phi_1 = m * v_2 ^2/2 + q * phi_2


\varphi_1 = -\displaystyle\frac{ Q }{8 \pi \epsilon_0 \epsilon }\displaystyle\frac{ r_1 ^2 }{ R ^3 }

phi_i =- Q * r ^2/(8 * pi * epsilon * epsilon_0 * R ^3)


\varphi_2 = -\displaystyle\frac{ Q }{8 \pi \epsilon_0 \epsilon }\displaystyle\frac{ r_2 ^2 }{ R ^3 }

phi_i =- Q * r ^2/(8 * pi * epsilon * epsilon_0 * R ^3)


q_1 =\displaystyle\frac{ r_1 ^3}{ R ^3} Q

q = r ^3* Q / R ^3


q_2 =\displaystyle\frac{ r_2 ^3}{ R ^3} Q

q = r ^3* Q / R ^3

ID:(15806, 0)



Charge fraction (1)

Equation

>Top, >Model


In the case of a the sphere radius (R) sphere with homogeneous charge, the Gaussian surface for the distance between charges (r) includes the encapsulated charge on Gauss surface (q) for the charge (Q) :

q_1 =\displaystyle\frac{ r_1 ^3}{ R ^3} Q

q =\displaystyle\frac{ r ^3}{ R ^3} Q

Q
Charge
C
5459
r
r_1
Radius 1
m
10390
q
q_1
Encapsulated charge on Gauss surface in 1
C
10480
R
Sphere radius
m
8541
E_i1 = Q * r_1 /(4 * pi * epsilon_0 * epsilon * R ^3) E_i2 = Q * r_2 /(4 * pi * epsilon_0 * epsilon * R ^3) q_1 = r_1 ^3* Q / R ^3 q_2 = r_2 ^3* Q / R ^3 phi_1 =- Q * r_1 ^2/(8 * pi * epsilon * epsilon_0 * R ^3) phi_2 =- Q * r_2 ^2/(8 * pi * epsilon * epsilon_0 * R ^3) m * v_1 ^2/2 + q * phi_1 = m * v_2 ^2/2 + q * phi_2 Qepsilonepsilon_0E_i1E_i2phi_1phi_2q_1q_2mpir_1r_2v_1v_2Rq

ID:(11461, 1)



Insulating sphere with full volume charge, interior (1)

Equation

>Top, >Model


The electric field, sphere, interior (E_i) is with the pi (\pi), the charge (Q), the electric field constant (\epsilon_0), the dielectric constant (\epsilon), the sphere radius (R) and the distance between charges (r) is equal to:

E_{i1} =\displaystyle\frac{1}{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{ Q r_1 }{ R ^3 }

E_i =\displaystyle\frac{1}{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{ Q r }{ R ^3 }

Q
Charge
C
5459
\epsilon
Dielectric constant
-
5463
r
r_1
Radius 1
m
10390
\epsilon_0
Electric field constant
8.854187e-12
C^2/m^2N
5462
E_i
E_{i1}
Electric field, sphere, interior in 1
V/m
10482
\pi
Pi
3.1415927
rad
5057
R
Sphere radius
m
8541
E_i1 = Q * r_1 /(4 * pi * epsilon_0 * epsilon * R ^3) E_i2 = Q * r_2 /(4 * pi * epsilon_0 * epsilon * R ^3) q_1 = r_1 ^3* Q / R ^3 q_2 = r_2 ^3* Q / R ^3 phi_1 =- Q * r_1 ^2/(8 * pi * epsilon * epsilon_0 * R ^3) phi_2 =- Q * r_2 ^2/(8 * pi * epsilon * epsilon_0 * R ^3) m * v_1 ^2/2 + q * phi_1 = m * v_2 ^2/2 + q * phi_2 Qepsilonepsilon_0E_i1E_i2phi_1phi_2q_1q_2mpir_1r_2v_1v_2Rq

Considering a spherical Gaussian surface, the electric field is constant. Therefore, the electric eield (E) is equal to the charge (Q), the electric field constant (\epsilon_0), the dielectric constant (\epsilon), and the surface of the conductor (S) as shown by:

E S = \displaystyle\frac{ Q }{ \epsilon_0 \epsilon }



Since the surface area of the surface of a sphere (S) is equal to the pi (\pi) and the disc radius (r), we have:

S = 4 \pi r ^2



The charge enclosed by the Gaussian surface, with the encapsulated charge on Gauss surface (q), the sphere radius (R), and the distance between charges (r), is given by:

q =\displaystyle\frac{ r ^3}{ R ^3} Q



Therefore, the electric field, sphere, interior (E_i) results in:

E_i =\displaystyle\frac{1}{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{ Q r }{ R ^3 }

ID:(11447, 1)



Charge fraction (2)

Equation

>Top, >Model


In the case of a the sphere radius (R) sphere with homogeneous charge, the Gaussian surface for the distance between charges (r) includes the encapsulated charge on Gauss surface (q) for the charge (Q) :

q_2 =\displaystyle\frac{ r_2 ^3}{ R ^3} Q

q =\displaystyle\frac{ r ^3}{ R ^3} Q

Q
Charge
C
5459
r
r_2
Radius 2
m
10391
q
q_2
Encapsulated charge on Gauss surface in 2
C
10481
R
Sphere radius
m
8541
E_i1 = Q * r_1 /(4 * pi * epsilon_0 * epsilon * R ^3) E_i2 = Q * r_2 /(4 * pi * epsilon_0 * epsilon * R ^3) q_1 = r_1 ^3* Q / R ^3 q_2 = r_2 ^3* Q / R ^3 phi_1 =- Q * r_1 ^2/(8 * pi * epsilon * epsilon_0 * R ^3) phi_2 =- Q * r_2 ^2/(8 * pi * epsilon * epsilon_0 * R ^3) m * v_1 ^2/2 + q * phi_1 = m * v_2 ^2/2 + q * phi_2 Qepsilonepsilon_0E_i1E_i2phi_1phi_2q_1q_2mpir_1r_2v_1v_2Rq

ID:(11461, 2)



Insulating sphere with full volume charge, interior (2)

Equation

>Top, >Model


The electric field, sphere, interior (E_i) is with the pi (\pi), the charge (Q), the electric field constant (\epsilon_0), the dielectric constant (\epsilon), the sphere radius (R) and the distance between charges (r) is equal to:

E_{i2} =\displaystyle\frac{1}{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{ Q r_2 }{ R ^3 }

E_i =\displaystyle\frac{1}{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{ Q r }{ R ^3 }

Q
Charge
C
5459
\epsilon
Dielectric constant
-
5463
r
r_2
Radius 2
m
10391
\epsilon_0
Electric field constant
8.854187e-12
C^2/m^2N
5462
E_i
E_{i2}
Electric field, sphere, interior in 2
V/m
10483
\pi
Pi
3.1415927
rad
5057
R
Sphere radius
m
8541
E_i1 = Q * r_1 /(4 * pi * epsilon_0 * epsilon * R ^3) E_i2 = Q * r_2 /(4 * pi * epsilon_0 * epsilon * R ^3) q_1 = r_1 ^3* Q / R ^3 q_2 = r_2 ^3* Q / R ^3 phi_1 =- Q * r_1 ^2/(8 * pi * epsilon * epsilon_0 * R ^3) phi_2 =- Q * r_2 ^2/(8 * pi * epsilon * epsilon_0 * R ^3) m * v_1 ^2/2 + q * phi_1 = m * v_2 ^2/2 + q * phi_2 Qepsilonepsilon_0E_i1E_i2phi_1phi_2q_1q_2mpir_1r_2v_1v_2Rq

Considering a spherical Gaussian surface, the electric field is constant. Therefore, the electric eield (E) is equal to the charge (Q), the electric field constant (\epsilon_0), the dielectric constant (\epsilon), and the surface of the conductor (S) as shown by:

E S = \displaystyle\frac{ Q }{ \epsilon_0 \epsilon }



Since the surface area of the surface of a sphere (S) is equal to the pi (\pi) and the disc radius (r), we have:

S = 4 \pi r ^2



The charge enclosed by the Gaussian surface, with the encapsulated charge on Gauss surface (q), the sphere radius (R), and the distance between charges (r), is given by:

q =\displaystyle\frac{ r ^3}{ R ^3} Q



Therefore, the electric field, sphere, interior (E_i) results in:

E_i =\displaystyle\frac{1}{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{ Q r }{ R ^3 }

ID:(11447, 2)



Calculation of electric potential with spherical geometry, internal (1)

Equation

>Top, >Model


The reference electrical, insulating sphere, inner (\varphi_i) is with the pi (\pi), the charge (Q), the electric field constant (\epsilon_0), the dielectric constant (\epsilon), the distance between charges (r) and the sphere radius (R) is equal to:

\varphi_1 = -\displaystyle\frac{ Q }{8 \pi \epsilon_0 \epsilon }\displaystyle\frac{ r_1 ^2 }{ R ^3 }

\varphi_i = -\displaystyle\frac{ Q }{8 \pi \epsilon_0 \epsilon }\displaystyle\frac{ r ^2 }{ R ^3 }

Q
Charge
C
5459
\epsilon
Dielectric constant
-
5463
r
r_1
Radius 1
m
10390
\epsilon_0
Electric field constant
8.854187e-12
C^2/m^2N
5462
\pi
Pi
3.1415927
rad
5057
\varphi_i
\varphi_1
Electric potential 1
V
10392
R
Sphere radius
m
8541
E_i1 = Q * r_1 /(4 * pi * epsilon_0 * epsilon * R ^3) E_i2 = Q * r_2 /(4 * pi * epsilon_0 * epsilon * R ^3) q_1 = r_1 ^3* Q / R ^3 q_2 = r_2 ^3* Q / R ^3 phi_1 =- Q * r_1 ^2/(8 * pi * epsilon * epsilon_0 * R ^3) phi_2 =- Q * r_2 ^2/(8 * pi * epsilon * epsilon_0 * R ^3) m * v_1 ^2/2 + q * phi_1 = m * v_2 ^2/2 + q * phi_2 Qepsilonepsilon_0E_i1E_i2phi_1phi_2q_1q_2mpir_1r_2v_1v_2Rq

As the potential difference is the reference electrical, insulating sphere, inner (\varphi_i) with the electric field, sphere, interior (E_i) and the radius (r), we get:

\varphi_i = -\displaystyle\int_0^ r du\, E_i



Given that the electric field, sphere, interior (E_i) with the pi (\pi), the charge (Q), the electric field constant (\epsilon_0), the dielectric constant (\epsilon), the sphere radius (R), and the distance between charges (r) is equal to:

E_i =\displaystyle\frac{1}{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{ Q r }{ R ^3 }



In spherical coordinates, this is:

\varphi_i = -\displaystyle\int_0^{r} du \displaystyle\frac{ Q u }{4 \pi \epsilon_0 \epsilon R ^3 }= -\displaystyle\frac{ Q }{ 8 \pi \epsilon_0 \epsilon }\displaystyle\frac{ r ^2 }{ R ^3 }



Therefore, the reference electrical, insulating sphere, inner (\varphi_i) with the distance between charges (r) results in:

\varphi_i = -\displaystyle\frac{ Q }{8 \pi \epsilon_0 \epsilon }\displaystyle\frac{ r ^2 }{ R ^3 }

ID:(11583, 1)



Calculation of electric potential with spherical geometry, internal (2)

Equation

>Top, >Model


The reference electrical, insulating sphere, inner (\varphi_i) is with the pi (\pi), the charge (Q), the electric field constant (\epsilon_0), the dielectric constant (\epsilon), the distance between charges (r) and the sphere radius (R) is equal to:

\varphi_2 = -\displaystyle\frac{ Q }{8 \pi \epsilon_0 \epsilon }\displaystyle\frac{ r_2 ^2 }{ R ^3 }

\varphi_i = -\displaystyle\frac{ Q }{8 \pi \epsilon_0 \epsilon }\displaystyle\frac{ r ^2 }{ R ^3 }

Q
Charge
C
5459
\epsilon
Dielectric constant
-
5463
r
r_2
Radius 2
m
10391
\epsilon_0
Electric field constant
8.854187e-12
C^2/m^2N
5462
\pi
Pi
3.1415927
rad
5057
\varphi_i
\varphi_2
Electric potential 2
V
10393
R
Sphere radius
m
8541
E_i1 = Q * r_1 /(4 * pi * epsilon_0 * epsilon * R ^3) E_i2 = Q * r_2 /(4 * pi * epsilon_0 * epsilon * R ^3) q_1 = r_1 ^3* Q / R ^3 q_2 = r_2 ^3* Q / R ^3 phi_1 =- Q * r_1 ^2/(8 * pi * epsilon * epsilon_0 * R ^3) phi_2 =- Q * r_2 ^2/(8 * pi * epsilon * epsilon_0 * R ^3) m * v_1 ^2/2 + q * phi_1 = m * v_2 ^2/2 + q * phi_2 Qepsilonepsilon_0E_i1E_i2phi_1phi_2q_1q_2mpir_1r_2v_1v_2Rq

As the potential difference is the reference electrical, insulating sphere, inner (\varphi_i) with the electric field, sphere, interior (E_i) and the radius (r), we get:

\varphi_i = -\displaystyle\int_0^ r du\, E_i



Given that the electric field, sphere, interior (E_i) with the pi (\pi), the charge (Q), the electric field constant (\epsilon_0), the dielectric constant (\epsilon), the sphere radius (R), and the distance between charges (r) is equal to:

E_i =\displaystyle\frac{1}{4 \pi \epsilon_0 \epsilon }\displaystyle\frac{ Q r }{ R ^3 }



In spherical coordinates, this is:

\varphi_i = -\displaystyle\int_0^{r} du \displaystyle\frac{ Q u }{4 \pi \epsilon_0 \epsilon R ^3 }= -\displaystyle\frac{ Q }{ 8 \pi \epsilon_0 \epsilon }\displaystyle\frac{ r ^2 }{ R ^3 }



Therefore, the reference electrical, insulating sphere, inner (\varphi_i) with the distance between charges (r) results in:

\varphi_i = -\displaystyle\frac{ Q }{8 \pi \epsilon_0 \epsilon }\displaystyle\frac{ r ^2 }{ R ^3 }

ID:(11583, 2)



Energy of a particle

Equation

>Top, >Model


Electric potentials, which represent potential energy per unit of charge, influence how the velocity of a particle varies. Consequently, due to the conservation of energy between two points, it follows that in the presence of variables the charge (q), the particle mass (m), the speed 1 (v_1), the speed 2 (v_2), the electric potential 1 (\varphi_1), and the electric potential 2 (\varphi_2), the following relationship must be satisfied:

\displaystyle\frac{1}{2} m v_1 ^2 + q \varphi_1 = \displaystyle\frac{1}{2} m v_2 ^2 + q \varphi_2

\varphi_1
Electric potential 1
V
10392
\varphi_2
Electric potential 2
V
10393
m
Particle mass
kg
5516
v_1
Speed 1
m/s
8562
v_2
Speed 2
m/s
8563
q
Test charge
C
8746
E_i1 = Q * r_1 /(4 * pi * epsilon_0 * epsilon * R ^3) E_i2 = Q * r_2 /(4 * pi * epsilon_0 * epsilon * R ^3) q_1 = r_1 ^3* Q / R ^3 q_2 = r_2 ^3* Q / R ^3 phi_1 =- Q * r_1 ^2/(8 * pi * epsilon * epsilon_0 * R ^3) phi_2 =- Q * r_2 ^2/(8 * pi * epsilon * epsilon_0 * R ^3) m * v_1 ^2/2 + q * phi_1 = m * v_2 ^2/2 + q * phi_2 Qepsilonepsilon_0E_i1E_i2phi_1phi_2q_1q_2mpir_1r_2v_1v_2Rq

ID:(11596, 0)