Fluxo de Água
Storyboard
Em solo saturado, podem ocorrer situações em que ocorram variações de pressão. Essas variações, por sua vez, geram um fluxo que, neste caso, deve ocorrer dentro dos poros do solo. Como esses poros têm uma ordem de tamanho da ordem de micrômetros ou dezenas de micrômetros, o fluxo tende a ser laminar devido aos baixos números de Reynolds.
ID:(369, 0)
Solução de densidade de fluxo de um canal
Conceito
A solução obtida para a altura e os parâmetros o fluxo em um ponto de referência ($j_{s0}$) e la altura de referência da coluna de água ($h_0$) nos mostra que la densidade de fluxo ($j_s$) é igual a:
$ \displaystyle\frac{ j_s }{ j_{s0} } = \displaystyle\frac{1}{\sqrt{1 - \displaystyle\frac{ 2 x }{ s_0 }}} $ |
Podemos representar la densidade de fluxo ($j_s$) graficamente em termos dos fatores adicionais $j_s/j_{s0}$ e $x/x_0$ da seguinte maneira:
la densidade de fluxo ($j_s$) continua aumentando à medida que nos aproximamos do canal, à medida que la altura da coluna d'água no solo ($h$) diminui. Esse aumento é necessário para manter a velocidade do fluxo em la densidade de fluxo ($j_s$) ou, alternativamente, aumentá-la.
ID:(7827, 0)
Fluxo laminar através de um tubo
Conceito
Quando um tubo preenchido com líquido de viscosidade viscosidade ($\eta$) é exposto a la pressão na posição inicial ($p_i$) em o posição no início do tubo ($L_i$) e la pressão na posição final (e) ($p_e$) em o posição na extremidade do tubo ($L_e$), gera-se uma diferença de pressão ($\Delta p_s$) ao longo de o comprimento do tubo ($\Delta L$), resultando no perfil de la velocidade em um raio do cilindro ($v$):
Em fluxos com valores baixos de o número de Reynolds ($Re$), onde a viscosidade é mais relevante do que a inércia do líquido, o fluxo se desenvolve de forma laminar, ou seja, sem a presença de turbulência.
ID:(2218, 0)
Folhas no córrego
Conceito
No fluxo laminar, camadas adjacentes se movem e existe uma força gerada pela viscosidade entre elas. A camada mais rápida arrasta sua vizinha mais lenta, enquanto a mais lenta restringe o avanço da mais rápida.
Portanto, a força la força viscosa ($F_v$) gerada por ($$) sobre a outra é uma função de ($$), ($$) e ($$), como mostrado na seguinte equação:
$ F_v =- S \eta \displaystyle\frac{ \Delta v }{ \Delta z }$ |
ilustrado no seguinte diagrama:
ID:(7053, 0)
Fluir através de um cilindro
Conceito
O fluxo laminar ao redor de um cilindro pode ser representado como múltiplas camadas cilíndricas deslizando sob a influência das camadas adjacentes. Nesse caso, la força viscosa ($F_v$) com o comprimento do tubo ($\Delta L$), la viscosidade ($\eta$) e as variáveis la posição radial no cilindro ($r$) e la velocidade em um raio do cilindro ($v$) é expresso como:
$ F_v =-2 \pi r \Delta L \eta \displaystyle\frac{ dv }{ dr }$ |
A camada na borda em ($$) permanece estacionária devido ao efeito de borda e, através de la viscosidade ($\eta$), retarda a camada adjacente que possui velocidade.
O centro é a parte que se move em la taxa de fluxo máxima ($v_{max}$), arrastando a camada circundante. Por sua vez, essa camada arrasta a próxima e assim por diante até atingir a camada em contato com a parede do cilindro, que está estacionária.
Dessa forma, o sistema transfere energia do centro para a parede, gerando um perfil de velocidade representado por:
$ v = v_{max} \left(1-\displaystyle\frac{ r ^2}{ R ^2}\right)$ |
com:
$ v_{max} =-\displaystyle\frac{ R ^2}{4 \eta }\displaystyle\frac{ \Delta p }{ \Delta L }$ |
ID:(7057, 0)
Fluxo de acordo com a equação de Hagen-Poiseuille
Conceito
O perfil de la velocidade em um raio do cilindro ($v$) em o raio de posição em um tubo ($r$) nos permite calcular o fluxo de volume ($J_V$) em um tubo através da integração de toda a superfície, o que nos leva à conhecida lei de Hagen-Poiseuille.
O resultado é uma equação que depende de raio do tubo ($R$) elevado à quarta potência. No entanto, é fundamental observar que este perfil de fluxo só é válido no caso de um fluxo laminar.
Assim, com isso, deduz-se de la viscosidade ($\eta$) que o fluxo de volume ($J_V$) diante de um comprimento do tubo ($\Delta L$) e ($$), a expressão:
$ J_V =-\displaystyle\frac{ \pi R ^4}{8 \eta }\displaystyle\frac{ \Delta p }{ \Delta L }$ |
Os artigos originais que deram origem a esta lei com um nome combinado foram:
"Ueber die Gesetze, welche des der Strom des Wassers in röhrenförmigen Gefässen bestimmen" (Sobre as leis que regem o fluxo da água em recipientes cilíndricos), Gotthilf Hagen, Annalen der Physik und Chemie 46:423442 (1839).
"Recherches expérimentales sur le mouvement des liquides dans les tubes de très-petits diamètres" (Pesquisa experimental sobre o movimento de líquidos em tubos de diâmetros muito pequenos), Jean-Louis-Marie Poiseuille, Comptes Rendus de l'Académie des Sciences 9:433544 (1840).
ID:(2216, 0)
Fluxo de volume
Conceito
Durante um tempo decorrido ($\Delta t$), o fluido com uma velocidade média do fluido ($v$) se desloca um elemento de tubo ($\Delta s$). Se la seção ($S$) representa a quantidade de fluido que atravessa essa seção em o tempo decorrido ($\Delta t$), é calculada como:
$\Delta V = S \Delta s = Sv \Delta t$
Esta equação indica que o volume de fluido que flui através da seção la seção ($S$) durante um tempo decorrido ($\Delta t$) é igual ao produto da área da seção e a distância percorrida pelo fluido nesse tempo.
Isso facilita o cálculo de o elemento de volume ($\Delta V$), que é o volume de fluido que flui pelo canal em um período específico de o tempo decorrido ($\Delta t$), correspondente a o fluxo de volume ($J_V$).
$ J_V =\displaystyle\frac{ \Delta V }{ \Delta t }$ |
ID:(2212, 0)
Modelo
Top
Parâmetros
Variáveis
Cálculos
Cálculos
Cálculos
Equações
$ \Delta L = L_e - L_i $
DL = L_e - L_i
$ \Delta p = p_e - p_i $
Dp = p_e - p_i
$ \Delta p = R_h J_V $
Dp = R_h * J_V
$ F_v =- S \eta \displaystyle\frac{ \Delta v }{ \Delta z }$
F_v =- S * eta * Dv / Dz
$ F_v =-2 \pi r \Delta L \eta \displaystyle\frac{ dv }{ dr }$
F_v =-2* pi * r * DL * eta *( dv / dr )
$ G_h =\displaystyle\frac{ \pi R ^4}{8 \eta | \Delta L | }$
G_h = pi * R ^4/(8* eta * abs( DL ))
$ j_s = \displaystyle\frac{ J_V }{ S }$
j_s = J_V / S
$ J_V =\displaystyle\frac{ dV }{ dt }$
J_V = @DIFF( V , t , 1 )
$ J_V = G_h \Delta p $
J_V = G_h * Dp
$ J_V =-\displaystyle\frac{ \pi R ^4}{8 \eta }\displaystyle\frac{ \Delta p }{ \Delta L }$
J_V =- pi * R ^4* Dp /(8* eta * DL )
$ k = \displaystyle\frac{ R ^2}{8}$
k = R ^2/8
$ Re =\displaystyle\frac{ \rho R v }{ \eta }$
Re = rho * R * v / eta
$ R_h = \displaystyle\frac{1}{ G_h }$
R_h = 1/ G_h
$ R_h =\displaystyle\frac{8 \eta | \Delta L | }{ \pi R ^4}$
R_h =8* eta * abs( DL )/( pi * R ^4)
$ S = \pi r ^2$
S = pi * r ^2
$ v = v_{max} \left(1-\displaystyle\frac{ r ^2}{ R ^2}\right)$
v = v_max *(1- ( r / R )^2)
$ v_{max} =-\displaystyle\frac{ R ^2}{4 \eta }\displaystyle\frac{ \Delta p }{ \Delta L }$
v_max = - R ^2* Dp /(4* DL * eta )
ID:(15221, 0)
Número de Reynolds
Equação
O critério chave para determinar se um meio é laminar ou turbulento é o chamado número de Reynolds, que compara a energia associada à inércia com aquela associada à viscosidade. A primeira depende de la densidade ($\rho$), la velocidade média do fluido ($v$) e la dimensão típica do sistema ($R$), enquanto a segunda depende de la viscosidade ($\eta$), definindo-o como:
$ Re =\displaystyle\frac{ \rho R v }{ \eta }$ |
ID:(3177, 0)
Diferença de pressão
Equação
Quando la pressão na posição inicial ($p_i$) e la pressão na posição final (e) ($p_e$) são conectados, uma la diferença de pressão ($\Delta p_s$) é criada, a qual é calculada usando a seguinte fórmula:
$ \Delta p = p_e - p_i $ |
la diferença de pressão ($\Delta p_s$) representa a diferença de pressão que fará o líquido fluir da coluna mais alta para a coluna mais baixa.
ID:(14459, 0)
Variação de comprimento
Equação
Para descrever o fluxo, é definido um sistema de coordenadas no qual o líquido flui de o posição no início do tubo ($L_i$) para o posição na extremidade do tubo ($L_e$), indicando que a pressão em la pressão na posição inicial ($p_i$) é maior do que em la pressão na posição final (e) ($p_e$). Este movimento depende de o comprimento do tubo ($\Delta L$), que é calculado da seguinte forma:
$ \Delta L = L_e - L_i $ |
ID:(3802, 0)
Força viscosa
Equação
La força viscosa ($F_v$) pode ser calculado a partir de os superfícies paralelas ($S$), la viscosidade ($\eta$), la diferença de velocidade entre superfícies ($\Delta v$) e la distância entre superfícies ($\Delta z$) utilizando o seguinte método:
$ F_v =- S \eta \displaystyle\frac{ \Delta v }{ \Delta z }$ |
ID:(3622, 0)
Força viscosa, caixa do cilindro
Equação
No caso de um cilindro, a superfície é definida por comprimento do tubo ($\Delta L$) e pelo perímetro de cada um dos cilindros internos, que é calculado multiplicando $2\pi$ por o raio de posição em um tubo ($r$). Com isso, la força de resistência no cilindro ($F_v$) é calculada usando la viscosidade ($\eta$) e la variação de velocidade entre dois raios ($dv$) para a largura do cilindro o variação do raio em um tubo ($dr$), resultando em:
$ F_v =-2 \pi r \Delta L \eta \displaystyle\frac{ dv }{ dr }$ |
Como a força viscosa é
$ F_v =- S \eta \displaystyle\frac{ \Delta v }{ \Delta z }$ |
e a superfície do cilindro é
$S=2\pi R L$
onde $R$ é o raio e $L$ é o comprimento do canal, a força viscosa pode ser expressa como
$ F_v =-2 \pi r \Delta L \eta \displaystyle\frac{ dv }{ dr }$ |
onde $\eta$ representa a viscosidade e $dv/dr$ é o gradiente de velocidade entre a parede e o fluxo.
ID:(3623, 0)
Perfil de velocidade de um fluxo através de um cilindro
Equação
Ao resolver a equação de fluxo com a condição de contorno, obtemos la velocidade em um raio do cilindro ($v$) como uma função de o raio de curvatura ($r$), representada por uma parábola centrada em la taxa de fluxo máxima ($v_{max}$) e igual a zero em o raio do tubo ($R$):
$ v = v_{max} \left(1-\displaystyle\frac{ r ^2}{ R ^2}\right)$ |
Quando uma la diferença de pressão ($\Delta p_s$) age sobre uma seção com uma área de $\pi R^2$, com o raio do tubo ($R$) como o raio de curvatura ($r$), ela gera uma força representada por:
$\pi r^2 \Delta p$
Essa força impulsiona o líquido contra a resistência viscosa, dada por:
Ao igualarmos essas duas forças, obtemos:
$\pi r^2 \Delta p = \eta 2\pi r \Delta L \displaystyle\frac{dv}{dr}$
O que nos leva à equação:
$\displaystyle\frac{dv}{dr} = \displaystyle\frac{1}{2\eta}\displaystyle\frac{\Delta p}{\Delta L} r$
Se integrarmos essa equação de uma posição definida por o raio de curvatura ($r$) até a borda onde o raio do tubo ($R$) está (levando em consideração que a velocidade na borda é zero), podemos obter la velocidade em um raio do cilindro ($v$) como função de o raio de curvatura ($r$):
Onde:
é La taxa de fluxo máxima ($v_{max}$) no centro do fluxo.
.
ID:(3627, 0)
Velocidade máxima no fluxo através de um cilindro
Equação
O valor de la taxa de fluxo máxima ($v_{max}$) no centro de um cilindro depende de la viscosidade ($\eta$), o raio do tubo ($R$) e do gradiente criado por la diferença de pressão ($\Delta p_s$) e o comprimento do tubo ($\Delta L$), conforme representado abaixo:
$ v_{max} =-\displaystyle\frac{ R ^2}{4 \eta }\displaystyle\frac{ \Delta p }{ \Delta L }$ |
O sinal negativo indica que o fluxo sempre ocorre na direção oposta ao gradiente, ou seja, da área de maior pressão para a área de menor pressão.
ID:(3628, 0)
Fluxo de Volume Instantâneo
Equação
O fluxo de volume ($J_V$) corresponde à quantidade volume ($V$) que flui pelo canal durante um tempo ($t$). Portanto, temos:
$ J_V =\displaystyle\frac{ dV }{ dt }$ |
A definição de o fluxo de volume ($J_V$) é O elemento de volume ($\Delta V$) durante o tempo decorrido ($\Delta t$):
$ J_V =\displaystyle\frac{ \Delta V }{ \Delta t }$ |
que, no limite de um intervalo de tempo infinitesimal, corresponde à derivada de o volume ($V$) em relação a o tempo ($t$):
$ J_V =\displaystyle\frac{ dV }{ dt }$ |
ID:(12713, 0)
Lei de Hagen Poiseuille
Equação
O fluxo de volume ($J_V$) pode ser calculado com a lei de Hagen-Poiseuille que com os parâmetros la viscosidade ($\eta$), la diferença de pressão ($\Delta p$), o raio do tubo ($R$) e o comprimento do tubo ($\Delta L$) é:
$ J_V =-\displaystyle\frac{ \pi R ^4}{8 \eta }\displaystyle\frac{ \Delta p }{ \Delta L }$ |
Se considerarmos o perfil de velocidade em um raio do cilindro ($v$) para um fluido em um canal cilíndrico, onde la velocidade em um raio do cilindro ($v$) varia em relação a raio de posição em um tubo ($r$) de acordo com a seguinte expressão:
$ v = v_{max} \left(1-\displaystyle\frac{ r ^2}{ R ^2}\right)$ |
envolvendo o raio do tubo ($R$) e la taxa de fluxo máxima ($v_{max}$). Podemos calcular la taxa de fluxo máxima ($v_{max}$) utilizando la viscosidade ($\eta$), la diferença de pressão ($\Delta p$) e o comprimento do tubo ($\Delta L$) da seguinte forma:
$ v_{max} =-\displaystyle\frac{ R ^2}{4 \eta }\displaystyle\frac{ \Delta p }{ \Delta L }$ |
Se integrarmos a velocidade em toda a seção transversal do canal, obteremos o fluxo de volume ($J_V$), definida como a integral de $\pi r v(r)$ em relação a raio de posição em um tubo ($r$) de $0$ a raio do tubo ($R$). Essa integral pode ser simplificada da seguinte maneira:
$J_V=-\displaystyle\int_0^Rdr \pi r v(r)=-\displaystyle\frac{R^2}{4\eta}\displaystyle\frac{\Delta p}{\Delta L}\displaystyle\int_0^Rdr \pi r \left(1-\displaystyle\frac{r^2}{R^2}\right)$
A integração resulta na lei de Hagen-Poiseuille resultante:
$ J_V =-\displaystyle\frac{ \pi R ^4}{8 \eta }\displaystyle\frac{ \Delta p }{ \Delta L }$ |
ID:(3178, 0)
Condutância Hidráulica de um Tubo
Equação
Com o raio do tubo ($R$), la viscosidade ($\eta$) e o comprimento do tubo ($\Delta L$) temos que uma condutância hidráulica ($G_h$) é:
$ G_h =\displaystyle\frac{ \pi R ^4}{8 \eta | \Delta L | }$ |
ID:(15102, 0)
Lei de Darcy e condutância hidráulica
Equação
Com a introdução de la condutância hidráulica ($G_h$), podemos reescrever a equação de Hagen-Poiseuille com la diferença de pressão ($\Delta p$) e o fluxo de volume ($J_V$) usando a seguinte equação:
$ J_V = G_h \Delta p $ |
Se observarmos a lei de Hagen-Poiseuille, que nos permite calcular o fluxo de volume ($J_V$) a partir de o raio do tubo ($R$), la viscosidade ($\eta$), o comprimento do tubo ($\Delta L$) e la diferença de pressão ($\Delta p$):
$ J_V =-\displaystyle\frac{ \pi R ^4}{8 \eta }\displaystyle\frac{ \Delta p }{ \Delta L }$ |
podemos introduzir la condutância hidráulica ($G_h$), definido em termos de o comprimento do tubo ($\Delta L$), o raio do tubo ($R$) e la viscosidade ($\eta$), da seguinte forma:
$ G_h =\displaystyle\frac{ \pi R ^4}{8 \eta | \Delta L | }$ |
para obter:
$ J_V = G_h \Delta p $ |
ID:(14471, 0)
Condutância hidráulica
Equação
No contexto da resistência elétrica, existe o seu inverso, conhecido como a condutância elétrica. Da mesma forma, o que seria la condutância hidráulica ($G_h$) pode ser definido em termos de la resistência hidráulica ($R_h$) através da expressão:
$ R_h = \displaystyle\frac{1}{ G_h }$ |
ID:(15092, 0)
Resistência hidráulica de um tubo
Equação
Como la resistência hidráulica ($R_h$) é igual ao inverso de la condutância hidráulica ($G_h$), ele pode ser calculado a partir da expressão deste último. Dessa forma, podemos identificar parâmetros relacionados à geometria (o comprimento do tubo ($\Delta L$) e o raio do tubo ($R$)) e ao tipo de líquido (la viscosidade ($\eta$)), que podem ser denominados coletivamente como uma resistência hidráulica ($R_h$):
$ R_h =\displaystyle\frac{8 \eta | \Delta L | }{ \pi R ^4}$ |
Uma vez que la resistência hidráulica ($R_h$) é igual a la condutância hidráulica ($G_h$) conforme a seguinte equação:
$ R_h = \displaystyle\frac{1}{ G_h }$ |
e uma vez que la condutância hidráulica ($G_h$) é expresso em termos de la viscosidade ($\eta$), o raio do tubo ($R$) e o comprimento do tubo ($\Delta L$) da seguinte forma:
$ G_h =\displaystyle\frac{ \pi R ^4}{8 \eta | \Delta L | }$ |
podemos concluir que:
$ R_h =\displaystyle\frac{8 \eta | \Delta L | }{ \pi R ^4}$ |
ID:(3629, 0)
Lei de Darcy e resistência hidráulica
Equação
Darcy reescreve a equação de Hagen Poiseuille de modo que la diferença de pressão ($\Delta p$) seja igual a la resistência hidráulica ($R_h$) vezes o fluxo de volume ($J_V$):
$ \Delta p = R_h J_V $ |
O fluxo de volume ($J_V$) pode ser calculado a partir de la condutância hidráulica ($G_h$) e la diferença de pressão ($\Delta p$) usando a seguinte equação:
$ J_V = G_h \Delta p $ |
Além disso, usando a relação para la resistência hidráulica ($R_h$):
$ R_h = \displaystyle\frac{1}{ G_h }$ |
obtém-se o resultado:
$ \Delta p = R_h J_V $ |
ID:(3179, 0)
Superfície de um disco
Equação
La superfície de um disco ($S$) de um raio do disco ($r$) é calculada da seguinte forma:
$ S = \pi r ^2$ |
ID:(3804, 0)
Fluxo de volume e sua velocidade
Equação
Uma densidade de fluxo ($j_s$) pode ser expresso em termos de o fluxo de volume ($J_V$) utilizando la seção ou superfície ($S$) através da seguinte fórmula:
$ j_s = \displaystyle\frac{ J_V }{ S }$ |
O fluxo é definido como o volume o elemento de volume ($\Delta V$) dividido pelo tempo o tempo decorrido ($\Delta t$), conforme expresso na seguinte equação:
$ J_V =\displaystyle\frac{ \Delta V }{ \Delta t }$ |
e o volume é igual à área da seção la seção de tubo ($S$) multiplicada pela distância percorrida o elemento de tubo ($\Delta s$):
$ \Delta V = S \Delta s $ |
Como a distância percorrida o elemento de tubo ($\Delta s$) por unidade de tempo o tempo decorrido ($\Delta t$) corresponde à velocidade, ela é representada por:
$ j_s =\displaystyle\frac{ \Delta s }{ \Delta t }$ |
Assim, o fluxo é Uma densidade de fluxo ($j_s$), que é calculado usando:
$ j_s = \displaystyle\frac{ J_V }{ S }$ |
ID:(4349, 0)
Permeabilidade hidráulica
Equação
O fator restante é chamado la permeabilidade hidrodinâmica ($k$) e pode ser calculado usando o raio do tubo ($R$) com a seguinte fórmula:
$ k = \displaystyle\frac{ R ^2}{8}$ |
Se examinarmos la condutância hidráulica ($G_h$), podemos notar que o numerador contém a área da seção transversal do tubo, representada como $\pi R^2$. Aqui, o raio do tubo ($R$) corresponde a uma propriedade do líquido, la viscosidade ($\eta$) está relacionada à viscosidade do fluido, e o comprimento do tubo ($\Delta L$) refere-se ao gradiente de pressão gerado.
$ G_h =\displaystyle\frac{ \pi R ^4}{8 \eta | \Delta L | }$ |
Assim, o fator específico da geometria dos poros pode ser definido como la permeabilidade hidrodinâmica ($k$) usando a seguinte fórmula:
$ k = \displaystyle\frac{ R ^2}{8}$ |
ID:(108, 0)