Particle exchange

Storyboard

The exchange of substances between the atmosphere and the ocean can include particles. This is particularly relevant when studying the transfer of CO2 molecules from the atmosphere to the ocean.

Ocean-Atmosphere Interactions of Gases and Particles, Peter S. Liss, Martin T. Johnson (eds.). Springer, 2014

Chapter: Transfer Across the Air-Sea Interface

>Model

ID:(1630, 0)



Mechanisms

Iframe

>Top



Code
Concept

Mechanisms

ID:(15636, 0)



CO2 diffusion

Description

>Top


The absorption of CO2 by the oceans helps mitigate the effects of this gas in the atmosphere and therefore delays climate change. However, the processes involved are more complex and include:

- Gas exchange with the atmosphere: The ocean and the atmosphere are in constant exchange of CO2 through gas diffusion. Atmospheric CO2 dissolves in the surface of the ocean and forms carbonic acid (H2CO3), which then dissociates into hydrogen ions (H+) and bicarbonate ions (HCO3-). This process helps balance the CO2 levels between the ocean and the atmosphere.

- Photosynthesis and respiration: Marine organisms, such as phytoplankton and algae, perform photosynthesis and take up CO2 from the water to produce organic matter and release oxygen. This process, known as carbon fixation, helps extract CO2 from the ocean. On the other hand, marine organisms also respire, which means they release CO2 into the water during the decomposition of organic matter.

- Ocean circulation: The ocean is characterized by its global circulation, in which currents transport CO2-rich water from the surface to the depths and vice versa. This contributes to the distribution and mixing of CO2 throughout the ocean, allowing deep waters to store large amounts of dissolved CO2.

- Sedimentation and burial: Part of the organic matter produced by marine organisms, including CO2 captured through photosynthesis, can sink to the ocean floor. As sediments accumulate over geological time, the organic carbon can become buried and stored in the seafloor for long periods.

Annual carbon flux in PgC/yr. Numbers in black are pre-industrial revolution, in red are increases related to the industrial revolution. Ocean-Atmosphere Interactions of Gases and Particles, Peter S. Liss Martin T. Johnson (Editors), Springer, 2014

Depending on the area and time of the planet, there is a greater concentration of carbon in the atmosphere than in the ocean or vice versa, thus defining whether the flow of carbon is from air to water or vice versa.

ID:(12297, 0)



Transfer rate and relative speed

Description

>Top


In a first approximation, the dependence of the gas transfer rate in water ($k_w$) in relation to the relative velocity, calculated by subtracting the velocidad del agua ($u_w$) from the velocidad del aire ($u_a$), is proportional to

$k_w \propto u_a - u_w$



as observed in the graph:

ID:(12298, 0)



Transfer rate and Schmidt number

Description

>Top


The relationship between the gas transfer rate in water ($k_w$) is inversely proportional to the schmidt number ($Sc$), so it is expressed as proportional to that number raised to exponente de Schmidt ($n$), which is negative:

$k_w\propto Sc^n$



which is represented with exponente de Schmidt ($n$) equal to -0.5:

ID:(12299, 0)



Solubility as a function of Schmidt number

Concept

>Top


The mobility of molecules, represented by the gas solubility ($\alpha$), is modeled as a function of particle concentration, characterized by the schmidt number ($Sc$), which in turn is calculated from parameters the viscosidad en masa acuosa ($\eta$), the densidad en capa de masa acuosa ($\rho$), and the constante de difusión en masa acuosa ($D$) using the following expression:

$ Sc =\displaystyle\frac{ \eta }{ \rho D }$



This relationship is visualized in the following diagram:

Ocean-Atmosphere Interactions of Gases and Particles, Peter S. Liss, Martin T. Johnson (eds.), Springer-Verlag Berlin Heidelberg

ID:(12245, 0)



CO2 exchange, speed from water

Concept

>Top


The gas transfer rate in water ($k_w$) can be modeled using measured data. Firstly, it depends on the rate at which the system removes carbon from the air-water interface, making the transport speed proportional to the relative velocity between the two mediums.

Secondly, there is an effect of ion mobility, which can be described by the schmidt number ($Sc$), representing the relationship between momentum diffusion and particles. However, this dependence is not linear and is influenced by a factor exponente de Schmidt ($n$) that varies between -1/2 and -2/3 depending on the surface roughness.

Finally, the gas transfer rate in water ($k_w$) also depends on the factor beta del transporte aire a agua de CO2 ($\beta$), which in turn is determined by the level of surface roughness.

In summary, the gas the gas transfer rate in water ($k_w$) is described as a function of the velocidad del agua ($u_w$), the velocidad del aire ($u_a$), the schmidt number ($Sc$), the factor beta del transporte aire a agua de CO2 ($\beta$), and exponente de Schmidt ($n$) as follows:

$ k_w = ( u_a - u_w ) \beta Sc ^ n $

ID:(15652, 0)



Model

Top

>Top



Parameters

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$F_a$
F_a
Atmosphere-to-ocean gas flux density
1/m^2s
$C_b$
C_b
Concentración de gas en el agua
$C_0$
C_0
Concentración de gas en el aire
$C_z$
C_z
Concentración en la profundidad $z$
$C_0$
C_0
Concentración en la superficie
$C$
C
Concentration flow
$D_C$
D_C
Concentration transmission constant
-
$D$
D
Constante de difusión en masa acuosa
m/s^2
$\rho$
rho
Densidad en capa de masa acuosa
kg/m^3
$n$
n
Exponente de Schmidt
-
$\beta$
beta
Factor beta del transporte aire a agua de CO2
-
$\Delta p_{gas}$
Dp_gas
Gas partial pressure difference between water and air
Pa
$\alpha$
alpha
Gas solubility
-
$k_a$
k_a
Gas transfer rate in air
m/s
$\delta_c$
delta_c
Grosor de la capa superficial
m
$\delta_{\eta}$
delta_eta
Grosor de la capa viscosa
m
$Sc$
Sc
Schmidt number
-
$k$
k
Velocidad de transferencia
m/s
$u_w$
u_w
Velocidad del agua
m/s
$U_z$
U_z
Velocidad del agua en la profundidad $z$
m/s
$u_a$
u_a
Velocidad del aire
m/s
$\eta$
eta
Viscosidad en masa acuosa
Pa s

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$C_a$
C_a
Gas concentration in the atmosphere
1/m^3
$C_{w,0}$
C_w0
Gas concentration in water
1/m^3
$k_w$
k_w
Gas transfer rate in water
m/s

Calculations


First, select the equation: to , then, select the variable: to

Calculations

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

Variable Given Calculate Target : Equation To be used




Equations

#
Equation

$ C = D_C U_z ( C_z - C_0 )$

C = D_C * U_z *( C_z - C_0 )


$ C_w = \alpha C_a $

C_w = alpha * C_a


$ \delta_c = \sqrt{\displaystyle\frac{ \rho D }{ \eta }} \delta_{\eta}$

delta_c =sqrt( D * rho / eta )* delta_eta


$ F_a =- k_a \Delta p_{gas} $

F_a =- k_a * Dp_gas


$ F_w = k_w \Delta p_{gas} $

F_w = k_w * Dp_gas


$ k =\displaystyle\frac{ F }{ C_0 - C_b }$

k = F /( C_0 - C_b )


$ k_a = \displaystyle\frac{ D }{ \delta_c }$

k_a = D / delta_c


$ k_w = ( u_a - u_w ) \beta Sc ^ n $

k_w = ( u_a - u_w )* beta * Sc ^ n


$ Sc =\displaystyle\frac{ \eta }{ \rho D }$

Sc = eta /( rho * D )

ID:(15641, 0)



Diffusive flux with the transfer velocity

Equation

>Top, >Model


Since the diffusive flux $F$ can be modeled using Fick\'s law:

$ F = - D \displaystyle\frac{d C }{d t }$



We can establish a relationship between the transfer velocity $k$ and the concentration difference $\Delta C$ as follows:

$ F_a =- k_a \Delta p_{gas} $

$F_a$
Atmosphere-to-ocean gas flux density
$1/m^2s$
9400
$\Delta p_{gas}$
Gas partial pressure difference between water and air
$Pa$
9404
$k_a$
Gas transfer rate in air
$m/s$
9407

The diffusive flux $F$ is described by Fick\'s law:

$ F = - D \displaystyle\frac{d C }{d t }$



where $D$ is the diffusion constant and $dC/dx$ is the concentration gradient. By defining a transfer velocity as:

$ k_a = \displaystyle\frac{ D }{ \delta_c }$



we can establish a flow equation of the form:

$ F_a =- k_a \Delta p_{gas} $

ID:(12226, 0)



Concentration profile in the surface layer (MOST)

Equation

>Top, >Model


Using the Monin-Obukhov Similarity Theory (MOST) model, the flux of elements such as gases can be estimated by considering the displacement of the surface and a transfer coefficient, which is expressed as follows:

$ C = D_C U_z ( C_z - C_0 )$

$C_z$
Concentración en la profundidad $z$
$1/m^3$
9429
$C_0$
Concentración en la superficie
$1/m^3$
9428
$C$
Concentration flow
$kg/m^2s$
10067
$D_C$
Concentration transmission constant
$-$
10066
$U_z$
Velocidad del agua en la profundidad $z$
$m/s$
9421

In the Monin-Obukhov Similarity Theory (MOST) model, the flux of elements such as gases is estimated by considering the difference in concentrations between the air and water, represented by

$C_z - C_0$



and the flux is calculated using the transfer coefficient $D_C$ and the surface velocity $U_z$, as follows:

$ C = D_C U_z ( C_z - C_0 )$

This allows for the estimation of the flux of elements between the air and water.

ID:(12224, 0)



Surface Concentration Relationships

Equation

>Top, >Model


The concentration gradient between the gas concentration in the atmosphere ($C_a$) and the gas concentration in water ($C_{w,0}$) depends on the gas solubility ($\alpha$). Therefore, the following relationship is established:

$ C_w = \alpha C_a $

$C_a$
Gas concentration in the atmosphere
$1/m^3$
9416
$C_w$
Gas concentration in water
$1/m^3$
9415
$\alpha$
Gas solubility
$-$
9406

ID:(12235, 0)



Transport of a quantity

Equation

>Top, >Model


The transfer velocity of a quantity $k$ is defined as the flux $F$ divided by the concentration difference between the two media, represented by

$C_0-C_b$



Therefore, it can be expressed as:

$ k =\displaystyle\frac{ F }{ C_0 - C_b }$

$F$
Atmosphere-to-ocean gas flux density
$1/m^2s$
9400
$C_b$
Concentración de gas en el agua
$1/m^3$
9401
$C_0$
Concentración de gas en el aire
$1/m^3$
9402
$k$
Velocidad de transferencia
$m/s$
9403

ID:(12213, 0)



Transfer speed

Equation

>Top, >Model


The gas transfer rate in air ($k_a$) can be estimated from Fick's law by comparing the constante de difusión en masa acuosa ($D$) with the grosor de la capa superficial ($\delta_c$) as follows:

$ k_a = \displaystyle\frac{ D }{ \delta_c }$

$D$
Constante de difusión en masa acuosa
$m^2/s$
9414
$k_a$
Gas transfer rate in air
$m/s$
9407
$\delta_c$
Grosor de la capa superficial
$m$
9430

ID:(12227, 0)



CO2 exchange

Equation

>Top, >Model


The transfer rate of CO2 from the atmosphere to water can be modeled using an equation similar to the general rule

$ k =\displaystyle\frac{ F }{ C_0 - C_b }$



In this model, the concentration difference is replaced by the difference in partial pressure of the gas and its solubility $\alpha$. The equation can be expressed as:

$ F_w = k_w \Delta p_{gas} $

$\Delta p_{gas}$
Gas partial pressure difference between water and air
$Pa$
9404
$k_w$
Gas transfer rate in water
$m/s$
9405

If we consider the gas flux as $F$ and the transport velocity as $k$, according to the general relationship:

$ k =\displaystyle\frac{ F }{ C_0 - C_b }$



By replacing the concentration difference $C_0 - C_b$ with the difference in partial pressure of the gas using the solubility $\alpha$, we have:

$C_0 - C_b = \alpha \Delta p_{CO2}$



we can obtain:

$ F_w = k_w \Delta p_{gas} $

ID:(12214, 0)



CO2 exchange, speed from water

Equation

>Top, >Model


The gas parameter the gas transfer rate in water ($k_w$) is described in terms of the velocidad del agua ($u_w$), the velocidad del aire ($u_a$), the schmidt number ($Sc$), the factor beta del transporte aire a agua de CO2 ($\beta$), and exponente de Schmidt ($n$) as follows:

$ k_w = ( u_a - u_w ) \beta Sc ^ n $

$n$
Exponente de Schmidt
$-$
9926
$\beta$
Factor beta del transporte aire a agua de CO2
$-$
9409
$k_w$
Gas transfer rate in water
$m/s$
9405
$Sc$
Schmidt number
$-$
9410
$u_w$
Velocidad del agua
$m/s$
9437
$u_a$
Velocidad del aire
$m/s$
9408

ID:(12215, 0)



Schmidt\'s number Sc

Equation

>Top, >Model


The Schmidt number establishes a relationship between viscous diffusion

$ D_p \equiv \displaystyle\frac{ \eta }{ \rho }$



and particle diffusion

$ D_N \equiv \mu k_B T $

.

The former is equal to viscosity divided by density, while the latter corresponds to the diffusion constant. Therefore, it is defined as follows:

$ Sc =\displaystyle\frac{ \eta }{ \rho D }$

$D$
Constante de difusión en masa acuosa
$m^2/s$
9414
$\rho$
Densidad en capa de masa acuosa
$kg/m^3$
9413
$Sc$
Schmidt number
$-$
9410
$\eta$
Viscosidad en masa acuosa
$Pa s$
9412

ID:(12216, 0)



Surface thickness and viscous layer

Equation

>Top, >Model


El grosor de la superficie y de la capa viscosas son proposicionales siendo la constante una función de la constante difusión, viscosidad y densidad.

Por ello con es

$ \delta_c = \sqrt{\displaystyle\frac{ \rho D }{ \eta }} \delta_{\eta}$

ID:(12229, 0)