Heat exchange

Storyboard

The exchange of heat between the atmosphere and the ocean refers to the process by which the atmosphere transfers or absorbs heat from the ocean, thereby equalizing the temperatures between the two.

Ocean-Atmosphere Interactions of Gases and Particles, Peter S. Liss, Martin T. Johnson (eds.). Springer, 2014

Chapter: Transfer Across the Air-Sea Interface

>Model

ID:(1580, 0)



Mechanisms

Iframe

>Top



Code
Concept

Mechanisms

ID:(15637, 0)



Heat transfer

Image

>Top



ID:(12300, 0)



Model

Top

>Top



Parameters

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$D$
D
Constante de difusión en masa acuosa
m/s^2
$\rho_a$
rho_a
Densidad del aire
kg/m^3
$\rho$
rho
Densidad en capa de masa acuosa
kg/m^3
$\epsilon$
epsilon
Energía disipada
J
$\delta_c$
delta_c
Grosor de la capa superficial
m
$\delta_{\eta}$
delta_eta
Grosor de la capa viscosa
m
$H_z$
H_z
Heat flux
W/m^2K
$C_H$
C_H
Heat transfer constant
-
$c_p$
c_p
Specific heat at constant pressure
J/kg K
$T_z$
T_z
Temperatura en la profundidad $z$
K
$T_0$
T_0
Temperatura en la superficie
K
$U_z$
U_z
Velocidad del agua en la profundidad $z$
m/s
$\eta$
eta
Viscosidad en masa acuosa
Pa s

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units

Calculations


First, select the equation: to , then, select the variable: to

Calculations

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

Variable Given Calculate Target : Equation To be used




Equations

#
Equation

$ \delta_c = \sqrt{\displaystyle\frac{ \rho D }{ \eta }} \delta_{\eta}$

delta_c =sqrt( D * rho / eta )* delta_eta


$ \epsilon = \displaystyle\frac{ \eta ^3 }{ \rho ^3 \delta_{\eta} ^4 }$

epsilon = eta ^3/( rho ^3* delta_eta ^4 )


$ H_z = C_H \rho_a c_p ( T_z - T_0 ) U_z $

H_z = C_H *rho_a * c_p * ( T_z - T_0 )* U_z

ID:(15642, 0)



Surface layer temperature profile (MOST)

Equation

>Top, >Model


In the case of heat flux, the heat content is estimated using density, specific heat, and temperature, along with the wind velocity and the transmission coefficient. In this way, the heat flux can be expressed as follows:

$ H_z = C_H \rho_a c_p ( T_z - T_0 ) U_z $

$\rho_a$
Densidad del aire
$kg/m^3$
9418
$H_z$
Heat flux
$W/m^2K$
10065
$C_H$
Heat transfer constant
$-$
9427
$c_p$
Specific heat at constant pressure
$J/kg K$
9426
$T_z$
Temperatura en la profundidad $z$
$K$
9424
$T_0$
Temperatura en la superficie
$K$
9423
$U_z$
Velocidad del agua en la profundidad $z$
$m/s$
9421

In the Monin-Obukhov Similarity Theory (MOST), the surface heat energy, represented by

$\rho_a c_p (T_z - T_0)$



is transferred to the water with the transfer coefficient $C_H$ and the air velocity $U_z$, resulting in the heat flux.

$ H_z = C_H \rho_a c_p ( T_z - T_0 ) U_z $

ID:(12223, 0)



Energy dissipation in surface layer

Equation

>Top, >Model


La energía disipada se puede estimar de la viscosidad, densidad y grosor de la capa.

Por ello con es

$ \epsilon = \displaystyle\frac{ \eta ^3 }{ \rho ^3 \delta_{\eta} ^4 }$

ID:(12230, 0)



Surface thickness and viscous layer

Equation

>Top, >Model


El grosor de la superficie y de la capa viscosas son proposicionales siendo la constante una función de la constante difusión, viscosidad y densidad.

Por ello con es

$ \delta_c = \sqrt{\displaystyle\frac{ \rho D }{ \eta }} \delta_{\eta}$

ID:(12229, 0)