Processing math: 0%
User: No user logged in.


Efecto de la Viscosidad

Storyboard

>Model

ID:(328, 0)



Viscose force

Equation

>Top, >Model


The viscose force (F_v) can be calculated from the parallel surfaces (S), the viscosity (\eta), the speed difference between surfaces (\Delta v), and the distance between surfaces (\Delta z) using the following method:

F_v =- S \eta \displaystyle\frac{ \Delta v }{ \Delta z }

\Delta z
Distance between surfaces
m
5436
S
Section
m^2
5205
\Delta v
Speed difference between surfaces
m/s
5556
F_v
Viscose force
N
4979
\eta
Viscosity
Pa s
5422
J_V =- pi * R ^4* Dp /(8* eta * DL ) F_v =- S * eta * Dv / Dz F_v =-2* pi * r * DL * eta *( dv / dr ) v = v_max *(1- ( r / R )^2) v_max = - R ^2* Dp /(4* DL * eta )eta_n=eta_pleft(1+displaystyle rac{5}{2}Ht ight)eta_d=displaystyle rac{eta_n}{1+C_{sigma}displaystyle rac{dsigma}{dt}}eta_{fl}=displaystyle rac{eta_n}{left(1-displaystyle rac{d}{R} ight)^4} DL = L_e - L_i eta_fleta_dRHtCrDzdtdv_maxeta_npieta_pL_iL_eSDvvDLRDpdsigmaF_vetaJ_V

ID:(3622, 0)



Viscose force, cylinder case

Equation

>Top, >Model


In the case of a cylinder, the surface is defined by tube length (\Delta L), and by the perimeter of each of the internal cylinders, which is calculated by multiplying 2\pi by the radius of position in a tube (r). With this, the cylinder resistance force (F_v) is calculated using the viscosity (\eta) and the variation of speed between two radii (dv) for the width of the cylinder the radius variation in a tube (dr), resulting in:

F_v =-2 \pi r \Delta L \eta \displaystyle\frac{ dv }{ dr }

r
Cylinder radial position
m
5420
\pi
Pi
3.1415927
rad
5057
v
Speed on a cylinder radio
m/s
5449
\Delta L
Tube length
m
5430
R
Tube radius
m
5417
F_v
Viscose force
N
4979
\eta
Viscosity
Pa s
5422
J_V =- pi * R ^4* Dp /(8* eta * DL ) F_v =- S * eta * Dv / Dz F_v =-2* pi * r * DL * eta *( dv / dr ) v = v_max *(1- ( r / R )^2) v_max = - R ^2* Dp /(4* DL * eta )eta_n=eta_pleft(1+displaystyle rac{5}{2}Ht ight)eta_d=displaystyle rac{eta_n}{1+C_{sigma}displaystyle rac{dsigma}{dt}}eta_{fl}=displaystyle rac{eta_n}{left(1-displaystyle rac{d}{R} ight)^4} DL = L_e - L_i eta_fleta_dRHtCrDzdtdv_maxeta_npieta_pL_iL_eSDvvDLRDpdsigmaF_vetaJ_V

As the viscous force is

F_v =- S \eta \displaystyle\frac{ \Delta v }{ \Delta z }



and the surface area of the cylinder is

S=2\pi R L



where R is the radius and L is the length of the channel, the viscous force can be expressed as

F_v =-2 \pi r \Delta L \eta \displaystyle\frac{ dv }{ dr }

where \eta represents the viscosity and dv/dr is the velocity gradient between the wall and the flow.

ID:(3623, 0)



Change in length

Equation

>Top, >Model


To describe the flow, a coordinate system is defined in which the liquid flows from the position at the beginning of the tube (L_i) to the position at the end of the tube (L_e), indicating that the pressure at the pressure in the initial position (p_i) is greater than at the pressure in end position (e) (p_e). This movement depends on the tube length (\Delta L), which is calculated as follows:

\Delta L = L_e - L_i

L_i
Position at the beginning of the tube
m
6274
L_e
Position at the end of the tube
m
6275
\Delta L
Tube length
m
5430
J_V =- pi * R ^4* Dp /(8* eta * DL ) F_v =- S * eta * Dv / Dz F_v =-2* pi * r * DL * eta *( dv / dr ) v = v_max *(1- ( r / R )^2) v_max = - R ^2* Dp /(4* DL * eta )eta_n=eta_pleft(1+displaystyle rac{5}{2}Ht ight)eta_d=displaystyle rac{eta_n}{1+C_{sigma}displaystyle rac{dsigma}{dt}}eta_{fl}=displaystyle rac{eta_n}{left(1-displaystyle rac{d}{R} ight)^4} DL = L_e - L_i eta_fleta_dRHtCrDzdtdv_maxeta_npieta_pL_iL_eSDvvDLRDpdsigmaF_vetaJ_V

ID:(3802, 0)



Einstein Viscosity Model of the Blood

Equation

>Top, >Model


\eta_n=\eta_p\left(1+\displaystyle\frac{2}{5}Ht\right)

ID:(3636, 0)



Speed profile of flow in a cylinder

Equation

>Top, >Model


When solving the flow equation with the boundary condition, we obtain the speed on a cylinder radio (v) as a function of the curvature radio (r), represented by a parabola centered at the maximum flow rate (v_{max}) and equal to zero at the tube radius (R):

v = v_{max} \left(1-\displaystyle\frac{ r ^2}{ R ^2}\right)

r
Cylinder radial position
m
5420
v_{max}
Maximum flow rate
m/s
5421
v
Speed on a cylinder radio
m/s
5449
R
Tube radius
m
5417
J_V =- pi * R ^4* Dp /(8* eta * DL ) F_v =- S * eta * Dv / Dz F_v =-2* pi * r * DL * eta *( dv / dr ) v = v_max *(1- ( r / R )^2) v_max = - R ^2* Dp /(4* DL * eta )eta_n=eta_pleft(1+displaystyle rac{5}{2}Ht ight)eta_d=displaystyle rac{eta_n}{1+C_{sigma}displaystyle rac{dsigma}{dt}}eta_{fl}=displaystyle rac{eta_n}{left(1-displaystyle rac{d}{R} ight)^4} DL = L_e - L_i eta_fleta_dRHtCrDzdtdv_maxeta_npieta_pL_iL_eSDvvDLRDpdsigmaF_vetaJ_V

When a the pressure difference (\Delta p_s) acts on a section with an area of \pi R^2, with the tube radius (R) as the curvature radio (r), it generates a force represented by:

\pi r^2 \Delta p



This force drives the liquid against viscous resistance, given by:

F_v =-2 \pi r \Delta L \eta \displaystyle\frac{ dv }{ dr }



By equating these two forces, we obtain:

\pi r^2 \Delta p = \eta 2\pi r \Delta L \displaystyle\frac{dv}{dr}



Which leads to the equation:

\displaystyle\frac{dv}{dr} = \displaystyle\frac{1}{2\eta}\displaystyle\frac{\Delta p}{\Delta L} r



If we integrate this equation from a position defined by the curvature radio (r) to the edge where the tube radius (R) (taking into account that the velocity at the edge is zero), we can obtain the speed on a cylinder radio (v) as a function of the curvature radio (r):

v = v_{max} \left(1-\displaystyle\frac{ r ^2}{ R ^2}\right)



Where:

v_{max} =-\displaystyle\frac{ R ^2}{4 \eta }\displaystyle\frac{ \Delta p }{ \Delta L }



is the maximum flow rate (v_{max}) at the center of the flow.

.

ID:(3627, 0)



Maximal speed of flow in a cylinder

Equation

>Top, >Model


The value of the maximum flow rate (v_{max}) at the center of a cylinder depends on the viscosity (\eta), the tube radius (R), and the gradient created by the pressure difference (\Delta p_s) and the tube length (\Delta L), as represented by:

v_{max} =-\displaystyle\frac{ R ^2}{4 \eta }\displaystyle\frac{ \Delta p }{ \Delta L }

v_{max}
Maximum flow rate
m/s
5421
\Delta L
Tube length
m
5430
R
Tube radius
m
5417
\Delta p
Variación de la Presión
Pa
6673
\eta
Viscosity
Pa s
5422
J_V =- pi * R ^4* Dp /(8* eta * DL ) F_v =- S * eta * Dv / Dz F_v =-2* pi * r * DL * eta *( dv / dr ) v = v_max *(1- ( r / R )^2) v_max = - R ^2* Dp /(4* DL * eta )eta_n=eta_pleft(1+displaystyle rac{5}{2}Ht ight)eta_d=displaystyle rac{eta_n}{1+C_{sigma}displaystyle rac{dsigma}{dt}}eta_{fl}=displaystyle rac{eta_n}{left(1-displaystyle rac{d}{R} ight)^4} DL = L_e - L_i eta_fleta_dRHtCrDzdtdv_maxeta_npieta_pL_iL_eSDvvDLRDpdsigmaF_vetaJ_V

The negative sign indicates that the flow always occurs in the direction opposite to the gradient, meaning from the area of higher pressure to the area of lower pressure.

ID:(3628, 0)



Adhesion of Blood on the Wall

Image

>Top


ID:(1896, 0)



Viscosity with Fahraeus-Lindqvist Effect

Equation

>Top, >Model


\eta_{fl}=\displaystyle\frac{\eta_n}{\left(1-\displaystyle\frac{d}{R}\right)^4}

ID:(3638, 0)



Viscosity and Tension

Image

>Top


ID:(1895, 0)



Viscosity of Deformed Hemocytes

Equation

>Top, >Model


\eta_d=\displaystyle\frac{\eta_n}{1+C_{\sigma}\displaystyle\frac{d\sigma}{dt}}

ID:(3637, 0)



Deformation of Platelet

Image

>Top


ID:(1695, 0)



Hagen Poiseuille Equation

Equation

>Top, >Model


The volume flow (J_V) can be calculated with the Hagen-Poiseuille law that with the parameters the viscosity (\eta), the pressure difference (\Delta p), the tube radius (R) and the tube length (\Delta L) is:

J_V =-\displaystyle\frac{ \pi R ^4}{8 \eta }\displaystyle\frac{ \Delta p }{ \Delta L }

\pi
Pi
3.1415927
rad
5057
\Delta L
Tube length
m
5430
R
Tube radius
m
5417
\Delta p
Variación de la Presión
Pa
6673
\eta
Viscosity
Pa s
5422
J_V
Volume flow
m^3/s
5448
J_V =- pi * R ^4* Dp /(8* eta * DL ) F_v =- S * eta * Dv / Dz F_v =-2* pi * r * DL * eta *( dv / dr ) v = v_max *(1- ( r / R )^2) v_max = - R ^2* Dp /(4* DL * eta )eta_n=eta_pleft(1+displaystyle rac{5}{2}Ht ight)eta_d=displaystyle rac{eta_n}{1+C_{sigma}displaystyle rac{dsigma}{dt}}eta_{fl}=displaystyle rac{eta_n}{left(1-displaystyle rac{d}{R} ight)^4} DL = L_e - L_i eta_fleta_dRHtCrDzdtdv_maxeta_npieta_pL_iL_eSDvvDLRDpdsigmaF_vetaJ_V

If we consider the profile of speed on a cylinder radio (v) for a fluid in a cylindrical channel, where the speed on a cylinder radio (v) varies with respect to radius of position in a tube (r) according to the following expression:

v = v_{max} \left(1-\displaystyle\frac{ r ^2}{ R ^2}\right)



involving the tube radius (R) and the maximum flow rate (v_{max}). We can calculate the maximum flow rate (v_{max}) using the viscosity (\eta), the pressure difference (\Delta p), and the tube length (\Delta L) as follows:

v_{max} =-\displaystyle\frac{ R ^2}{4 \eta }\displaystyle\frac{ \Delta p }{ \Delta L }



If we integrate the velocity across the cross-section of the channel, we obtain the volume flow (J_V), defined as the integral of \pi r v(r) with respect to radius of position in a tube (r) from 0 to tube radius (R). This integral can be simplified as follows:

J_V=-\displaystyle\int_0^Rdr \pi r v(r)=-\displaystyle\frac{R^2}{4\eta}\displaystyle\frac{\Delta p}{\Delta L}\displaystyle\int_0^Rdr \pi r \left(1-\displaystyle\frac{r^2}{R^2}\right)



The integration yields the resulting Hagen-Poiseuille law:

J_V =-\displaystyle\frac{ \pi R ^4}{8 \eta }\displaystyle\frac{ \Delta p }{ \Delta L }

ID:(3178, 0)