Parallel hydraulic elements

Storyboard

When hydraulic elements are connected in parallel, the flow is distributed among them, while the pressure drop is the same for all of them. The sum of the individual flows results in the total flow, and therefore, the total hydraulic resistance is equal to the inverse of the sum of the inverses of the individual hydraulic resistances. On the other hand, hydraulic conductivities are summed directly.

>Model

ID:(1467, 0)



Mechanisms

Iframe

>Top



Code
Concept

Mechanisms

ID:(15726, 0)



Hydraulic conductance of elements in parallel

Concept

>Top


En el caso de una suma en la que los elementos están conectados en paralelo, la conductancia hidráulica total del sistema se calcula sumando las conductancias individuales de cada elemento.



With the total flow ($J_{Vt}$) being equal to the volume flow in a network ($J_{Vk}$):

$ J_{Vt} =\displaystyle\sum_k J_{Vk} $



and with the pressure difference ($\Delta p$) and the hydraulic conductance in a network ($G_{hk}$), along with the equation

$ J_{Vk} = G_{hk} \Delta p $



for each element, it leads us to the conclusion that with the parallel total hydraulic conductance ($G_{pt}$),

$J_{Vt}=\displaystyle\sum_k J_{Vk} = \displaystyle\sum_k G_{hk}\Delta p = G_{pt}\Delta p$



we have

$ G_{pt} =\displaystyle\sum_k G_{hk} $

ID:(12800, 0)



Hydraulic resistance of elements in parallel

Concept

>Top


In the case of a sum where the elements are connected in parallel, the total hydraulic resistance of the system is calculated by adding the individual resistances of each element.



the parallel total hydraulic conductance ($G_{pt}$) combined with the hydraulic conductance in a network ($G_{hk}$) in

$ G_{pt} =\displaystyle\sum_k G_{hk} $



and along with the hydraulic resistance in a network ($R_{hk}$) and the equation

$ R_{hk} = \displaystyle\frac{1}{ G_{hk} }$



leads to the total hydraulic resistance in parallel ($R_{pt}$) via

$\displaystyle\frac{1}{ R_{pt} }=\sum_k\displaystyle\frac{1}{ R_{hk} }$

ID:(11068, 0)



Process for the addition of hydraulic resistances in parallel

Description

>Top


First, values for the hydraulic resistance in a network ($R_{hk}$) are calculated using the variables the viscosity ($\eta$), the cylinder k radio ($R_k$), and the tube k length ($\Delta L_k$) through the following equation:

$ R_{hk} =\displaystyle\frac{8 \eta | \Delta L_k | }{ \pi R_k ^4}$



These values are then summed to obtain the total hydraulic resistance in series ($R_{st}$):

$\displaystyle\frac{1}{ R_{pt} }=\sum_k\displaystyle\frac{1}{ R_{hk} }$



With this result, it is possible to calculate the variación de la Presión ($\Delta p$) for the total hydraulic resistance in parallel ($R_{pt}$) using:



Once the variación de la Presión ($\Delta p$) is determined, the volume flow in a network ($J_{Vk}$) is calculated via:



For the case of three resistances, the calculations can be visualized in the following chart:

ID:(11070, 0)



Model

Top

>Top



Calculations

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$J_{Vt}$
J_Vt
Flujo de Volumen Total
m^3/s
$\Delta L_k$
DL_k
Tube k length
m
$\Delta p$
Dp
Variación de la Presión
Pa
$J_V$
J_V
Volume flow
m^3/s
$J_{Vk}$
J_Vk
Volume flow in a network
m^3/s

Parameters

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$R_k$
R_k
Cylinder k radio
m
$G_{hk}$
G_hk
Hydraulic conductance in a network
m^4s/kg
$R_h$
R_h
Hydraulic resistance
kg/m^4s
$R_{hk}$
R_hk
Hydraulic resistance in a network
kg/m^4s
$G_{pt}$
G_pt
Parallel total hydraulic conductance
m^4s/kg
$\pi$
pi
Pi
rad
$R_{pt}$
R_pt
Total hydraulic resistance in parallel
kg/m^4s
$\eta$
eta
Viscosity
Pa s


First, select the equation: to , then, select the variable: to

Calculations

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

Variable Given Calculate Target : Equation To be used


Equation

#
Equation

$\displaystyle\frac{1}{ R_{pt} }=\sum_k\displaystyle\frac{1}{ R_{hk} }$

1/ R_pt =@SUM( 1/ R_hk , k )


$ \Delta p = R_h J_V $

Dp = R_h * J_V


$ \Delta p = R_h J_V $

Dp = R_h * J_V


$ G_{hk} =\displaystyle\frac{ \pi R_k ^4}{8 \eta | \Delta L_k | }$

G_h = pi * R ^4/(8* eta * abs( DL ))


$ G_{pt} =\displaystyle\sum_k G_{hk} $

G_pt = @SUM( G_hk , k )


$ J_{Vt} = G_{pt} \Delta p $

J_V = G_h * Dp


$ J_{Vk} = G_{hk} \Delta p $

J_V = G_h * Dp


$ J_{Vt} =\displaystyle\sum_k J_{Vk} $

J_Vt =sum_k J_Vk


$ R_{pt} = \displaystyle\frac{1}{ G_{pt} }$

R_h = 1/ G_h


$ R_{hk} = \displaystyle\frac{1}{ G_{hk} }$

R_h = 1/ G_h


$ R_{hk} =\displaystyle\frac{8 \eta | \Delta L_k | }{ \pi R_k ^4}$

R_h =8* eta * abs( DL )/( pi * R ^4)

ID:(15731, 0)



Darcy's law and hydraulic conductance (1)

Equation

>Top, >Model


With the introduction of the hydraulic conductance ($G_h$), we can rewrite the Hagen-Poiseuille equation with the pressure difference ($\Delta p$) and the volume flow ($J_V$) using the following equation:

$ J_{Vt} = G_{pt} \Delta p $

$ J_V = G_h \Delta p $

$G_h$
$G_{pt}$
Parallel total hydraulic conductance
$m^4/kg s$
10136
$\Delta p$
Variación de la Presión
$Pa$
6673
$J_V$
$J_{Vt}$
Flujo de Volumen Total
$m^3/s$
6611

If we examine the Hagen-Poiseuille law, which allows us to calculate the volume flow ($J_V$) from the cylinder radio ($R$), the viscosity ($\eta$), the tube length ($\Delta L$), and the pressure difference ($\Delta p$):

$ J_V =-\displaystyle\frac{ \pi R ^4}{8 \eta }\displaystyle\frac{ \Delta p }{ \Delta L }$



we can introduce the hydraulic conductance ($G_h$), defined in terms of the tube length ($\Delta L$), the cylinder radio ($R$), and the viscosity ($\eta$), as follows:

$ G_{hk} =\displaystyle\frac{ \pi R_k ^4}{8 \eta | \Delta L_k | }$



to arrive at:

$ J_V = G_h \Delta p $

ID:(14471, 1)



Darcy's law and hydraulic conductance (2)

Equation

>Top, >Model


With the introduction of the hydraulic conductance ($G_h$), we can rewrite the Hagen-Poiseuille equation with the pressure difference ($\Delta p$) and the volume flow ($J_V$) using the following equation:

$ J_{Vk} = G_{hk} \Delta p $

$ J_V = G_h \Delta p $

$G_h$
$G_{hk}$
Hydraulic conductance in a network
$m^4/kg s$
10134
$\Delta p$
Variación de la Presión
$Pa$
6673
$J_V$
$J_{Vk}$
Volume flow in a network
$m^3/s$
10133

If we examine the Hagen-Poiseuille law, which allows us to calculate the volume flow ($J_V$) from the cylinder radio ($R$), the viscosity ($\eta$), the tube length ($\Delta L$), and the pressure difference ($\Delta p$):

$ J_V =-\displaystyle\frac{ \pi R ^4}{8 \eta }\displaystyle\frac{ \Delta p }{ \Delta L }$



we can introduce the hydraulic conductance ($G_h$), defined in terms of the tube length ($\Delta L$), the cylinder radio ($R$), and the viscosity ($\eta$), as follows:

$ G_{hk} =\displaystyle\frac{ \pi R_k ^4}{8 \eta | \Delta L_k | }$



to arrive at:

$ J_V = G_h \Delta p $

ID:(14471, 2)



Hydraulic Conductance of a Pipe

Equation

>Top, >Model


With the cylinder radio ($R$), the viscosity ($\eta$) and the tube length ($\Delta L$) we have that a hydraulic conductance ($G_h$) is:

$ G_{hk} =\displaystyle\frac{ \pi R_k ^4}{8 \eta | \Delta L_k | }$

$ G_h =\displaystyle\frac{ \pi R ^4}{8 \eta | \Delta L | }$

$R$
$R_k$
Cylinder k radio
$m$
10376
$G_h$
$G_{hk}$
Hydraulic conductance in a network
$m^4/kg s$
10134
$\pi$
Pi
3.1415927
$rad$
5057
$\Delta L$
$\Delta L_k$
Tube k length
$m$
10375
$\eta$
Viscosity
$Pa s$
5422

ID:(15102, 0)



Sum of parallel flows

Equation

>Top, >Model


The sum of soil layers in parallel, denoted as the total flow ($J_{Vt}$), is equal to the sum of the volume flow in a network ($J_{Vk}$):

$ J_{Vt} =\displaystyle\sum_k J_{Vk} $

$J_{Vt}$
Flujo de Volumen Total
$m^3/s$
6611
$J_{Vk}$
Volume flow in a network
$m^3/s$
10133

.

ID:(4376, 0)



Hydraulic conductance of elements in parallel

Equation

>Top, >Model


The parallel total hydraulic conductance ($G_{pt}$) is calculated with the sum of the hydraulic conductance in a network ($G_{hk}$):

$ G_{pt} =\displaystyle\sum_k G_{hk} $

$G_{hk}$
Hydraulic conductance in a network
$m^4/kg s$
10134
$G_{pt}$
Parallel total hydraulic conductance
$m^4/kg s$
10136

With the total flow ($J_{Vt}$) being equal to the volume flow in a network ($J_{Vk}$):

$ J_{Vt} =\displaystyle\sum_k J_{Vk} $



and with the pressure difference ($\Delta p$) and the hydraulic conductance in a network ($G_{hk}$), along with the equation

$ J_{Vk} = G_{hk} \Delta p $



for each element, it leads us to the conclusion that with the parallel total hydraulic conductance ($G_{pt}$),

$J_{Vt}=\displaystyle\sum_k J_{Vk} = \displaystyle\sum_k G_{hk}\Delta p = G_{pt}\Delta p$



we have

$ G_{pt} =\displaystyle\sum_k G_{hk} $

.

ID:(3634, 0)



Hydraulic conductance (1)

Equation

>Top, >Model


In the context of electrical resistance, there exists its inverse, known as electrical conductance. Similarly, what would be the hydraulic conductance ($G_h$) can be defined in terms of the hydraulic resistance ($R_h$) through the expression:

$ R_{pt} = \displaystyle\frac{1}{ G_{pt} }$

$ R_h = \displaystyle\frac{1}{ G_h }$

$G_h$
$G_{pt}$
Parallel total hydraulic conductance
$m^4/kg s$
10136
$R_h$
$R_{pt}$
Total hydraulic resistance in parallel
$kg/m^4s$
5429

ID:(15092, 1)



Hydraulic conductance (2)

Equation

>Top, >Model


In the context of electrical resistance, there exists its inverse, known as electrical conductance. Similarly, what would be the hydraulic conductance ($G_h$) can be defined in terms of the hydraulic resistance ($R_h$) through the expression:

$ R_{hk} = \displaystyle\frac{1}{ G_{hk} }$

$ R_h = \displaystyle\frac{1}{ G_h }$

$G_h$
$G_{hk}$
Hydraulic conductance in a network
$m^4/kg s$
10134
$R_h$
$R_{hk}$
Hydraulic resistance in a network
$kg/m^4s$
9887

ID:(15092, 2)



Hydraulic resistance of a tube

Equation

>Top, >Model


Since the hydraulic resistance ($R_h$) is equal to the inverse of the hydraulic conductance ($G_h$), it can be calculated from the expression of the latter. In this way, we can identify parameters related to geometry (the tube length ($\Delta L$) and the cylinder radio ($R$)) and the type of liquid (the viscosity ($\eta$)), which can be collectively referred to as a hydraulic resistance ($R_h$):

$ R_{hk} =\displaystyle\frac{8 \eta | \Delta L_k | }{ \pi R_k ^4}$

$ R_h =\displaystyle\frac{8 \eta | \Delta L | }{ \pi R ^4}$

$R$
$R_k$
Cylinder k radio
$m$
10376
$R_h$
$R_{hk}$
Hydraulic resistance in a network
$kg/m^4s$
9887
$\pi$
Pi
3.1415927
$rad$
5057
$\Delta L$
$\Delta L_k$
Tube k length
$m$
10375
$\eta$
Viscosity
$Pa s$
5422

Since the hydraulic resistance ($R_h$) is equal to the hydraulic conductance ($G_h$) as per the following equation:

$ R_h = \displaystyle\frac{1}{ G_h }$



and since the hydraulic conductance ($G_h$) is expressed in terms of the viscosity ($\eta$), the cylinder radio ($R$), and the tube length ($\Delta L$) as follows:

$ G_{hk} =\displaystyle\frac{ \pi R_k ^4}{8 \eta | \Delta L_k | }$



we can conclude that:

$ R_h =\displaystyle\frac{8 \eta | \Delta L | }{ \pi R ^4}$

ID:(3629, 0)



Hydraulic resistance of parallel elements

Equation

>Top, >Model


The total hydraulic resistance in parallel ($R_{pt}$) can be calculated as the inverse of the sum of the hydraulic resistance in a network ($R_{hk}$):

$\displaystyle\frac{1}{ R_{pt} }=\sum_k\displaystyle\frac{1}{ R_{hk} }$

$R_{hk}$
Hydraulic resistance in a network
$kg/m^4s$
9887
$R_{pt}$
Total hydraulic resistance in parallel
$kg/m^4s$
5429

The parallel total hydraulic conductance ($G_{pt}$) combined with the hydraulic conductance in a network ($G_{hk}$) in

$ G_{pt} =\displaystyle\sum_k G_{hk} $



and along with the hydraulic resistance in a network ($R_{hk}$) and the equation

$ R_{hk} = \displaystyle\frac{1}{ G_{hk} }$



leads to the total hydraulic resistance in parallel ($R_{pt}$) via

$\displaystyle\frac{1}{ R_{pt} }=\sum_k\displaystyle\frac{1}{ R_{hk} }$

ID:(3181, 0)



Darcy's law and hydraulic resistance (1)

Equation

>Top, >Model


Darcy rewrites the Hagen Poiseuille equation so that the pressure difference ($\Delta p$) is equal to the hydraulic resistance ($R_h$) times the volume flow ($J_V$):

$ \Delta p = R_h J_V $

$R_h$
Hydraulic resistance
$kg/m^4s$
5424
$\Delta p$
Variación de la Presión
$Pa$
6673
$J_V$
Volume flow
$m^3/s$
5448

The volume flow ($J_V$) can be calculated from the hydraulic conductance ($G_h$) and the pressure difference ($\Delta p$) using the following equation:

$ J_V = G_h \Delta p $



Furthermore, using the relationship for the hydraulic resistance ($R_h$):

$ R_h = \displaystyle\frac{1}{ G_h }$



results in:

$ \Delta p = R_h J_V $

ID:(3179, 1)



Darcy's law and hydraulic resistance (2)

Equation

>Top, >Model


Darcy rewrites the Hagen Poiseuille equation so that the pressure difference ($\Delta p$) is equal to the hydraulic resistance ($R_h$) times the volume flow ($J_V$):

$ \Delta p = R_h J_V $

$R_h$
Hydraulic resistance
$kg/m^4s$
5424
$\Delta p$
Variación de la Presión
$Pa$
6673
$J_V$
Volume flow
$m^3/s$
5448

The volume flow ($J_V$) can be calculated from the hydraulic conductance ($G_h$) and the pressure difference ($\Delta p$) using the following equation:

$ J_V = G_h \Delta p $



Furthermore, using the relationship for the hydraulic resistance ($R_h$):

$ R_h = \displaystyle\frac{1}{ G_h }$



results in:

$ \Delta p = R_h J_V $

ID:(3179, 2)