Processing math: 0%
User: No user logged in.


The Diesel Cycle

Storyboard

The Diesel cycle corresponds to an internal combustion engine in which the heating occurs at constant pressure allowing the gas to expand in the ignition of the mixture.

>Model

ID:(1487, 0)



Mechanisms

Iframe

>Top


The Diesel cycle is a thermodynamic cycle that forms the basis of diesel engines, commonly used in vehicles and industrial machinery. Developed by Rudolf Diesel in the 1890s, this cycle is distinct from the gasoline engine's Otto cycle primarily in its ignition process. In the Diesel cycle, air is drawn into the cylinder and compressed at a much higher ratio than in gasoline engines, which heats it to a temperature that can ignite diesel fuel without the need for a spark plug.

During operation, the cycle starts with the piston drawing in air as it moves downward. The air is then compressed on the upward stroke, raising its temperature. At the peak of the compression phase, fuel is injected into the hot compressed air as a fine mist, causing spontaneous ignition. The combustion forces the piston downward, generating power. Finally, the exhaust phase expels the combustion gases when the piston moves upward again, completing the cycle.

Diesel engines are noted for their efficiency and durability. The high compression ratio not only allows the engine to extract more energy from the fuel but also increases its thermal efficiency, meaning a greater portion of the fuel's energy is converted to mechanical work. Diesel engines typically offer better fuel efficiency and produce fewer CO2 emissions per unit of energy than their gasoline counterparts, but they can emit higher levels of other pollutants, such as nitrogen oxides and particulates.

Code
Concept

Mechanisms

ID:(15283, 0)



Carnot cycle

Concept

>Top


Sadi Carnot introduced [1] the theoretical concept of the first machine design capable of generating mechanical work based on a heat gradient. This concept is realized through a process in the pressure-volume space where heat is added and extracted, as depicted in the image:



The area under curve the heat supplied (Q_H), spanning from 1 to 2, represents the energy input required to transition from state (p_1, V_1) to state (p_2, V_2). Conversely, the area under curve the absorbed heat (Q_C), going from 2 to 1, represents the energy extraction needed to return from state (p_2, V_2) back to state (p_1, V_1). The difference between these areas corresponds to the region enclosed by both curves and represents the effective work (W) that the system can perform.

Carnot also demonstrated that, in accordance with the second law of thermodynamics, the heat supplied (Q_H) cannot equal zero. This implies that no machine can convert all heat into work.

[1] "Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance" (Reflections on the Motive Power of Fire and on Machines Fitted to Develop That Power), Sadi Carnot, Annales scientifiques de lÉ.N.S. 2e série, tome 1, p. 393-457 (1872)

ID:(11131, 0)



Diesel Cycle: Pressure-Volume Diagram

Concept

>Top


Rudolf Diesel [1] set out to create a cycle distinct from the Carnot cycle with the aim of achieving higher efficiency compared to the Otto cycle. This process unfolds in the following stages:

• Stage 1 to 2: Adiabatic compression (p_1,V_1,T_1)\rightarrow (p_2,V_2,T_2),
• Stage 2 to 3: Heating and expansion at constant pressure (p_2,V_2,T_2)\rightarrow (p_2,V_3,T_3),
• Stage 3 to 4: Adiabatic expansion (p_2,V_3,T_3)\rightarrow (p_3,V_1,T_4),
• Stage 4 to 1: Cooling at constant volume (p_3,V_1,T_4)\rightarrow (p_1,V_1,T_1)

These stages are illustrated below:

The key lies in stage 2 to 3, where expansion occurs at constant pressure. The reason becomes evident when examining the graph:

The energy gained is equal to the area enclosed within the cycle, and by performing compression at constant pressure, this area is greater than in the case of compression at constant volume.

[1] "Verfahren zur Entwickelung eines rationellen Wärmemotors zum Ersatz der Dampfmaschine und der heute bekannten Verbrennungsmotoren" (Method for the Development of a Rational Heat Engine to Replace the Steam Engine and Contemporary Combustion Engines), Rudolf Diesel, Kaiserlichen Patentamts, No. 67207 (1892)

ID:(11141, 0)



Efficiency analysis

Concept

>Top


Both the Otto cycle and the Diesel cycle rely on variables the temperature in state 1 (T_1), the temperature in state 2 (T_2), the temperature in state 3 (T_3), and the temperature in state 4 (T_4). However, in the case of the Diesel cycle, it also depends on the adiabatic index (\kappa), whose value is 1.4.

In the Otto cycle, efficiency is calculated based on temperature using the equation:

\eta =1-\displaystyle\frac{ T_4 - T_1 }{ T_3 - T_2 }



While in the Diesel cycle, efficiency is calculated based on temperature using the equation:

\eta =1-\displaystyle\frac{1}{ \kappa }\displaystyle\frac{ T_4 - T_1 }{ T_3 - T_2 }

The inclusion of the factor 1/\kappa \sim 0.71 in the Diesel cycle makes it more efficient compared to the Otto cycle for the same temperature configuration. This is a direct result of enlarging the area enclosed in the curve that represents the cycle in the pressure-volume representation.

ID:(11153, 0)



Adiabatic expansion

Concept

>Top


Given that in an adiabatic expansion, the gas satisfies the relationships the volume in state i (V_i), the volume in state f (V_f), the temperature in initial state (T_i), the temperature in final state (T_f), and the adiabatic index (\kappa) as expressed in:

T_i V_i ^{ \kappa -1}= T_f V_f ^{ \kappa -1}



We can observe that during the state change from the intermediate volume (V_3) and the temperature in state 3 (T_3) to the expanded volume (V_1) and the temperature in state 4 (T_4), the following equality holds:

T_3V_3^{\kappa-1}=T_4V_1^{\kappa-1}



By using the equation for the expandability factor (r_E):

r_E =\displaystyle\frac{ V_1 }{ V_3 }



We obtain:

T_3 = T_4 r_E ^{ \kappa - 1}

ID:(15751, 0)



Adiabatic compression

Concept

>Top


Given that in an adiabatic expansion, the gas satisfies the relationships the volume in state i (V_i), the volume in state f (V_f), the temperature in initial state (T_i), the temperature in final state (T_f), and the adiabatic index (\kappa) as expressed in:

T_i V_i ^{ \kappa -1}= T_f V_f ^{ \kappa -1}



We can observe that during the state change from the expanded volume (V_1) and the temperature in state 1 (T_1) to the compressed volume (V_2) and the temperature in state 2 (T_2), the following equality holds:

T_1V_1^{\kappa-1}=T_2V_2^{\kappa-1}



Using the equation for the compressibility factor (r_C):

r_C =\displaystyle\frac{ V_1 }{ V_2 }



We obtain:

T_2 = T_1 r_C ^{ \kappa - 1}

ID:(15752, 0)



Gas heating

Concept

>Top


Since the heating occurs at constant pressure, Charles' law applies:

\displaystyle\frac{ V_i }{ T_i }=\displaystyle\frac{ V_f }{ T_f }



Therefore, the change of state (V_2, T_2) to (V_3, T_3) must satisfy:

\displaystyle\frac{T_2}{V_2} = \displaystyle\frac{T_3}{V_3}



Using the equations:

r_C =\displaystyle\frac{ V_1 }{ V_2 }



r_E =\displaystyle\frac{ V_1 }{ V_3 }



we can rewrite it as:

T_3 = \displaystyle\frac{V_3}{V_2} T_2 = \displaystyle\frac{V_3}{V_2} T_2 = \displaystyle\frac{V_3}{V_1} \displaystyle\frac{V_1}{V_2} T_2 = \displaystyle\frac{r_C}{r_E} T_2



In other words:

T_3 =\displaystyle\frac{ r_C }{ r_E } T_2

ID:(15753, 0)



Efficiency as a function of temperatures

Concept

>Top


The efficiency relationship in terms of temperature is obtained using the definition of efficiency:

\eta = 1-\displaystyle\frac{ Q_C }{ Q_H }



and the supplied heat and absorbed heat quantities:

Q_H = C_p ( T_3 - T_2 )



Q_C = C_V ( T_4 - T_1 )



This leads us to the efficiency relationship in terms of temperature:

\eta =1-\displaystyle\frac{1}{ \kappa }\displaystyle\frac{ T_4 - T_1 }{ T_3 - T_2 }

ID:(15754, 0)



Efficiency based on compression and expansion factors

Concept

>Top


The value of the efficiency (\eta) can be calculated using the values the adiabatic index (\kappa), the temperature in state 1 (T_1), the temperature in state 2 (T_2), the temperature in state 3 (T_3), and the temperature in state 4 (T_4) in the following equation:

\eta =1-\displaystyle\frac{1}{ \kappa }\displaystyle\frac{ T_4 - T_1 }{ T_3 - T_2 }



Furthermore, the relationships between temperatures with the compressibility factor (r_C) and the expandability factor (r_E) are defined by the following equations:

T_2 = T_1 r_C ^{ \kappa - 1}



T_3 = T_4 r_E ^{ \kappa - 1}



T_3 =\displaystyle\frac{ r_C }{ r_E } T_2



Additionally, the value of the adiabatic index (\kappa) is used in the equation:

\kappa =\displaystyle\frac{ C_p }{ C_V }



These equations allow us to calculate the performance of a process following the Diesel cycle using the following equation:

\eta =1-\displaystyle\frac{1}{ \kappa }\displaystyle\frac{ r_E ^{- \kappa }- r_C ^{- \kappa }}{ r_E ^{-1}- r_C ^{-1}}

ID:(15755, 0)



Model

Top

>Top



Parameters

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
\kappa
kappa
Adiabatic index
-
r_C
r_C
Compressibility factor
-
r_E
r_E
Expandability factor
-
C_p
C_p
Heat capacity at constant pressure
J/kg
C_V
C_V
Heat capacity at constant volume
J/kg
M
M
Mass
kg
c_p
c_p
Specific heat at constant pressure
J/kg K
c_V
c_V
Specific heat of gases at constant volume
J/kg K

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
Q_C
Q_C
Absorbed heat
J
V_2
V_2
Compressed volume
m^3
\eta
eta
Efficiency
-
V_1
V_1
Expanded volume
m^3
Q_H
Q_H
Heat supplied
J
V_3
V_3
Intermediate volume
m^3
T_1
T_1
Temperature in state 1
K
T_2
T_2
Temperature in state 2
K
T_3
T_3
Temperature in state 3
K
T_4
T_4
Temperature in state 4
K

Calculations


First, select the equation: to , then, select the variable: to
c_p = C_p / M c_V = C_V / M eta = 1 -( r_E ^(- kappa )- r_C ^(- kappa ))/( kappa *(1/ r_E -1/ r_C ) eta =1-( T_4 - T_1 )/( kappa *( T_3 - T_2 )) Q_C = C_V *( T_4 - T_1 ) Q_H = C_p *( T_3 - T_2 ) r_C = V_1 / V_2 r_E = V_1 / V_3 T_1 * V_1 ^( kappa -1)= T_2 V_2 ^( kappa - 1) T_2 = T_1 r_C ^( kappa - 1) T_3 = T_2 * r_C / r_E T_3 = T_4 r_E ^( kappa - 1) T_4 * V_1 ^( kappa -1)= T_3 V_2 ^( kappa - 1)Q_CkappaV_2r_Cetar_EV_1C_pC_VQ_HV_3Mc_pc_VT_1T_2T_3T_4

Calculations

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

Variable Given Calculate Target : Equation To be used
c_p = C_p / M c_V = C_V / M eta = 1 -( r_E ^(- kappa )- r_C ^(- kappa ))/( kappa *(1/ r_E -1/ r_C ) eta =1-( T_4 - T_1 )/( kappa *( T_3 - T_2 )) Q_C = C_V *( T_4 - T_1 ) Q_H = C_p *( T_3 - T_2 ) r_C = V_1 / V_2 r_E = V_1 / V_3 T_1 * V_1 ^( kappa -1)= T_2 V_2 ^( kappa - 1) T_2 = T_1 r_C ^( kappa - 1) T_3 = T_2 * r_C / r_E T_3 = T_4 r_E ^( kappa - 1) T_4 * V_1 ^( kappa -1)= T_3 V_2 ^( kappa - 1)Q_CkappaV_2r_Cetar_EV_1C_pC_VQ_HV_3Mc_pc_VT_1T_2T_3T_4




Equations

#
Equation

c_p =\displaystyle\frac{ C_p }{ M }

c_p = C_p / M


c_V =\displaystyle\frac{ C_V }{ M }

c_V = C_V / M


\eta =1-\displaystyle\frac{1}{ \kappa }\displaystyle\frac{ r_E ^{- \kappa }- r_C ^{- \kappa }}{ r_E ^{-1}- r_C ^{-1}}

eta = 1 -( r_E ^(- kappa )- r_C ^(- kappa ))/( kappa *(1/ r_E -1/ r_C )


\eta =1-\displaystyle\frac{1}{ \kappa }\displaystyle\frac{ T_4 - T_1 }{ T_3 - T_2 }

eta =1-( T_4 - T_1 )/( kappa *( T_3 - T_2 ))


Q_C = C_V ( T_4 - T_1 )

Q_C = C_V *( T_4 - T_1 )


Q_H = C_p ( T_3 - T_2 )

Q_H = C_p *( T_3 - T_2 )


r_C =\displaystyle\frac{ V_1 }{ V_2 }

r_C = V_1 / V_2


r_E =\displaystyle\frac{ V_1 }{ V_3 }

r_E = V_1 / V_3


T_1 V_1 ^{ \kappa - 1} = T_2 V_2 ^{ \kappa - 1}

T_1 * V_1 ^( kappa -1)= T_2 V_2 ^( kappa - 1)


T_2 = T_1 r_C ^{ \kappa - 1}

T_2 = T_1 r_C ^( kappa - 1)


T_3 =\displaystyle\frac{ r_C }{ r_E } T_2

T_3 = T_2 * r_C / r_E


T_3 = T_4 r_E ^{ \kappa - 1}

T_3 = T_4 r_E ^( kappa - 1)


T_4 V_1 ^{ \kappa - 1} = T_3 V_2 ^{ \kappa - 1}

T_4 * V_1 ^( kappa -1)= T_3 V_2 ^( kappa - 1)

ID:(15342, 0)



Adiabatic compression

Equation

>Top, >Model


In this case, from the initial point 1 to point 2. This means that during the adiabatic compression, the state of the gas changes from the expanded volume (V_1) and the temperature in state 1 (T_1) to the compressed volume (V_2) and the temperature in state 2 (T_2) as follows:

T_1 V_1 ^{ \kappa - 1} = T_2 V_2 ^{ \kappa - 1}

\kappa
Adiabatic index
-
6661
V_2
Compressed volume
m^3
8498
V_1
Expanded volume
m^3
8497
T_1
Temperature in state 1
K
8489
T_2
Temperature in state 2
K
8490
c_V = C_V / M c_p = C_p / M Q_H = C_p *( T_3 - T_2 ) Q_C = C_V *( T_4 - T_1 ) r_C = V_1 / V_2 r_E = V_1 / V_3 T_2 = T_1 r_C ^( kappa - 1) T_3 = T_4 r_E ^( kappa - 1) T_3 = T_2 * r_C / r_E eta = 1 -( r_E ^(- kappa )- r_C ^(- kappa ))/( kappa *(1/ r_E -1/ r_C ) T_4 * V_1 ^( kappa -1)= T_3 V_2 ^( kappa - 1) T_1 * V_1 ^( kappa -1)= T_2 V_2 ^( kappa - 1) eta =1-( T_4 - T_1 )/( kappa *( T_3 - T_2 )) Q_CkappaV_2r_Cetar_EV_1C_pC_VQ_HV_3Mc_pc_VT_1T_2T_3T_4

Given that in an adiabatic expansion, the gas satisfies the relationship with the volume in state i (V_i), the volume in state f (V_f), the temperature in initial state (T_i), and the temperature in final state (T_f):

T_i V_i ^{ \kappa -1}= T_f V_f ^{ \kappa -1}



In this case, from the initial point 1 to point 2. This means that during the adiabatic compression, the state of the gas changes from the expanded volume (V_1) and the temperature in state 1 (T_1) to the compressed volume (V_2) and the temperature in state 2 (T_2) as follows:

T_1 V_1 ^{ \kappa - 1} = T_2 V_2 ^{ \kappa - 1}

ID:(11160, 0)



Heat supplied

Equation

>Top, >Model


The heat supplied (Q_H) can be calculated with the heat capacity at constant pressure (C_p), the temperature in state 3 (T_3) and the temperature in state 2 (T_2) using the formula:

Q_H = C_p ( T_3 - T_2 )

C_p
Heat capacity at constant pressure
J/K
7937
Q_H
Heat supplied
J
8170
T_2
Temperature in state 2
K
8490
T_3
Temperature in state 3
K
8491
c_V = C_V / M c_p = C_p / M Q_H = C_p *( T_3 - T_2 ) Q_C = C_V *( T_4 - T_1 ) r_C = V_1 / V_2 r_E = V_1 / V_3 T_2 = T_1 r_C ^( kappa - 1) T_3 = T_4 r_E ^( kappa - 1) T_3 = T_2 * r_C / r_E eta = 1 -( r_E ^(- kappa )- r_C ^(- kappa ))/( kappa *(1/ r_E -1/ r_C ) T_4 * V_1 ^( kappa -1)= T_3 V_2 ^( kappa - 1) T_1 * V_1 ^( kappa -1)= T_2 V_2 ^( kappa - 1) eta =1-( T_4 - T_1 )/( kappa *( T_3 - T_2 )) Q_CkappaV_2r_Cetar_EV_1C_pC_VQ_HV_3Mc_pc_VT_1T_2T_3T_4

When supplying the heat supplied (Q_H), the gas temperature increases from T_2 to T_3 in an isobaric process (at constant pressure). This implies that we can use the relationship for ($$) with the heat capacity at constant pressure (C_p) and the variación de Temperature (\Delta T), expressed by the equation:

\Delta Q = C_p \Delta T



This leads us to the values of the temperature in state 3 (T_3) and the temperature in state 2 (T_2) using the formula:

Q_H = C_p ( T_3 - T_2 )

ID:(11144, 0)



Adiabatic expansion

Equation

>Top, >Model


In this case, from the initial point 3 to point 4. This means that during the adiabatic expansion, the state of the gas changes from the compressed volume (V_2) and the temperature in state 3 (T_3) to the expanded volume (V_1) and the temperature in state 4 (T_4) according to:

T_4 V_1 ^{ \kappa - 1} = T_3 V_2 ^{ \kappa - 1}

\kappa
Adiabatic index
-
6661
V_2
Compressed volume
m^3
8498
V_1
Expanded volume
m^3
8497
T_3
Temperature in state 3
K
8491
T_4
Temperature in state 4
K
8492
c_V = C_V / M c_p = C_p / M Q_H = C_p *( T_3 - T_2 ) Q_C = C_V *( T_4 - T_1 ) r_C = V_1 / V_2 r_E = V_1 / V_3 T_2 = T_1 r_C ^( kappa - 1) T_3 = T_4 r_E ^( kappa - 1) T_3 = T_2 * r_C / r_E eta = 1 -( r_E ^(- kappa )- r_C ^(- kappa ))/( kappa *(1/ r_E -1/ r_C ) T_4 * V_1 ^( kappa -1)= T_3 V_2 ^( kappa - 1) T_1 * V_1 ^( kappa -1)= T_2 V_2 ^( kappa - 1) eta =1-( T_4 - T_1 )/( kappa *( T_3 - T_2 )) Q_CkappaV_2r_Cetar_EV_1C_pC_VQ_HV_3Mc_pc_VT_1T_2T_3T_4

In an adiabatic expansion, the gas satisfies the relationship involving the volume in state i (V_i), the volume in state f (V_f), the temperature in initial state (T_i), and the temperature in final state (T_f):

T_i V_i ^{ \kappa -1}= T_f V_f ^{ \kappa -1}



In this case, from the initial point 3 to point 4. This means that during the adiabatic expansion, the state of the gas changes from the compressed volume (V_2) and the temperature in state 3 (T_3) to the expanded volume (V_1) and the temperature in state 4 (T_4) according to:

T_4 V_1 ^{ \kappa - 1} = T_3 V_2 ^{ \kappa - 1}

.

ID:(11159, 0)



Heat removed

Equation

>Top, >Model


The absorbed heat (Q_C) can be calculated from the heat capacity at constant volume (C_V), the temperature in state 4 (T_4) and the temperature in state 1 (T_1) using the formula:

Q_C = C_V ( T_4 - T_1 )

Q_C
Absorbed heat
J
8171
C_V
Heat capacity at constant volume
J/K
8481
T_1
Temperature in state 1
K
8489
T_4
Temperature in state 4
K
8492
c_V = C_V / M c_p = C_p / M Q_H = C_p *( T_3 - T_2 ) Q_C = C_V *( T_4 - T_1 ) r_C = V_1 / V_2 r_E = V_1 / V_3 T_2 = T_1 r_C ^( kappa - 1) T_3 = T_4 r_E ^( kappa - 1) T_3 = T_2 * r_C / r_E eta = 1 -( r_E ^(- kappa )- r_C ^(- kappa ))/( kappa *(1/ r_E -1/ r_C ) T_4 * V_1 ^( kappa -1)= T_3 V_2 ^( kappa - 1) T_1 * V_1 ^( kappa -1)= T_2 V_2 ^( kappa - 1) eta =1-( T_4 - T_1 )/( kappa *( T_3 - T_2 )) Q_CkappaV_2r_Cetar_EV_1C_pC_VQ_HV_3Mc_pc_VT_1T_2T_3T_4

When the absorbed heat (Q_C) is removed, the temperature of the gas increases from T_1 to T_4 in an isobaric process (at constant pressure). This implies that we can use the relationship for ($$) with the heat capacity at constant volume (C_V) and the variación de Temperature (\Delta T), which is expressed by the equation:

dU = C_V \Delta T



This leads us to the values of the temperature in state 1 (T_1) and the temperature in state 4 (T_4) using the formula:

Q_C = C_V ( T_4 - T_1 )

ID:(11145, 0)



Combustion cut factor r_C

Equation

>Top, >Model


In the analysis of the Diesel cycle, it is helpful to introduce the so-called the compressibility factor (r_C), which represents the relationship between the expanded volume (V_1) and the compressed volume (V_2) during the compression of the mixture, as shown in the following expression:

r_C =\displaystyle\frac{ V_1 }{ V_2 }

V_2
Compressed volume
m^3
8498
r_C
Compressibility factor
-
8501
V_1
Expanded volume
m^3
8497
c_V = C_V / M c_p = C_p / M Q_H = C_p *( T_3 - T_2 ) Q_C = C_V *( T_4 - T_1 ) r_C = V_1 / V_2 r_E = V_1 / V_3 T_2 = T_1 r_C ^( kappa - 1) T_3 = T_4 r_E ^( kappa - 1) T_3 = T_2 * r_C / r_E eta = 1 -( r_E ^(- kappa )- r_C ^(- kappa ))/( kappa *(1/ r_E -1/ r_C ) T_4 * V_1 ^( kappa -1)= T_3 V_2 ^( kappa - 1) T_1 * V_1 ^( kappa -1)= T_2 V_2 ^( kappa - 1) eta =1-( T_4 - T_1 )/( kappa *( T_3 - T_2 )) Q_CkappaV_2r_Cetar_EV_1C_pC_VQ_HV_3Mc_pc_VT_1T_2T_3T_4

ID:(11146, 0)



Exhaust cut factor r_E

Equation

>Top, >Model


In the analysis of the Diesel cycle, it is advantageous to introduce the term the expandability factor (r_E), which represents the relationship between the expanded volume (V_1) and the intermediate volume (V_3) during the compression of the mixture, as illustrated in the following expression:

r_E =\displaystyle\frac{ V_1 }{ V_3 }

r_E
Expandability factor
-
8502
V_1
Expanded volume
m^3
8497
V_3
Intermediate volume
m^3
8499
c_V = C_V / M c_p = C_p / M Q_H = C_p *( T_3 - T_2 ) Q_C = C_V *( T_4 - T_1 ) r_C = V_1 / V_2 r_E = V_1 / V_3 T_2 = T_1 r_C ^( kappa - 1) T_3 = T_4 r_E ^( kappa - 1) T_3 = T_2 * r_C / r_E eta = 1 -( r_E ^(- kappa )- r_C ^(- kappa ))/( kappa *(1/ r_E -1/ r_C ) T_4 * V_1 ^( kappa -1)= T_3 V_2 ^( kappa - 1) T_1 * V_1 ^( kappa -1)= T_2 V_2 ^( kappa - 1) eta =1-( T_4 - T_1 )/( kappa *( T_3 - T_2 )) Q_CkappaV_2r_Cetar_EV_1C_pC_VQ_HV_3Mc_pc_VT_1T_2T_3T_4

ID:(11147, 0)



Adiabatic expansion

Equation

>Top, >Model


The temperature in state 3 (T_3) can be calculated with the temperature in state 4 (T_4), the expandability factor (r_E) and the adiabatic index (\kappa) using:

T_3 = T_4 r_E ^{ \kappa - 1}

\kappa
Adiabatic index
-
6661
r_E
Expandability factor
-
8502
T_3
Temperature in state 3
K
8491
T_4
Temperature in state 4
K
8492
c_V = C_V / M c_p = C_p / M Q_H = C_p *( T_3 - T_2 ) Q_C = C_V *( T_4 - T_1 ) r_C = V_1 / V_2 r_E = V_1 / V_3 T_2 = T_1 r_C ^( kappa - 1) T_3 = T_4 r_E ^( kappa - 1) T_3 = T_2 * r_C / r_E eta = 1 -( r_E ^(- kappa )- r_C ^(- kappa ))/( kappa *(1/ r_E -1/ r_C ) T_4 * V_1 ^( kappa -1)= T_3 V_2 ^( kappa - 1) T_1 * V_1 ^( kappa -1)= T_2 V_2 ^( kappa - 1) eta =1-( T_4 - T_1 )/( kappa *( T_3 - T_2 )) Q_CkappaV_2r_Cetar_EV_1C_pC_VQ_HV_3Mc_pc_VT_1T_2T_3T_4

Given that in an adiabatic expansion, the gas satisfies the relationships the volume in state i (V_i), the volume in state f (V_f), the temperature in initial state (T_i), the temperature in final state (T_f), and the adiabatic index (\kappa) as expressed in:

T_i V_i ^{ \kappa -1}= T_f V_f ^{ \kappa -1}



We can observe that during the state change from the intermediate volume (V_3) and the temperature in state 3 (T_3) to the expanded volume (V_1) and the temperature in state 4 (T_4), the following equality holds:

T_3V_3^{\kappa-1}=T_4V_1^{\kappa-1}



By using the equation for the expandability factor (r_E):

r_E =\displaystyle\frac{ V_1 }{ V_3 }



We obtain:

T_3 = T_4 r_E ^{ \kappa - 1}

ID:(11149, 0)



Adiabatic compression

Equation

>Top, >Model


The temperature in state 2 (T_2) can be calculated from the temperature in state 1 (T_1), the compressibility factor (r_C) and the adiabatic index (\kappa) using:

T_2 = T_1 r_C ^{ \kappa - 1}

\kappa
Adiabatic index
-
6661
r_C
Compressibility factor
-
8501
T_1
Temperature in state 1
K
8489
T_2
Temperature in state 2
K
8490
c_V = C_V / M c_p = C_p / M Q_H = C_p *( T_3 - T_2 ) Q_C = C_V *( T_4 - T_1 ) r_C = V_1 / V_2 r_E = V_1 / V_3 T_2 = T_1 r_C ^( kappa - 1) T_3 = T_4 r_E ^( kappa - 1) T_3 = T_2 * r_C / r_E eta = 1 -( r_E ^(- kappa )- r_C ^(- kappa ))/( kappa *(1/ r_E -1/ r_C ) T_4 * V_1 ^( kappa -1)= T_3 V_2 ^( kappa - 1) T_1 * V_1 ^( kappa -1)= T_2 V_2 ^( kappa - 1) eta =1-( T_4 - T_1 )/( kappa *( T_3 - T_2 )) Q_CkappaV_2r_Cetar_EV_1C_pC_VQ_HV_3Mc_pc_VT_1T_2T_3T_4

Given that in an adiabatic expansion, the gas satisfies the relationships the volume in state i (V_i), the volume in state f (V_f), the temperature in initial state (T_i), the temperature in final state (T_f), and the adiabatic index (\kappa) as expressed in:

T_i V_i ^{ \kappa -1}= T_f V_f ^{ \kappa -1}



We can observe that during the state change from the expanded volume (V_1) and the temperature in state 1 (T_1) to the compressed volume (V_2) and the temperature in state 2 (T_2), the following equality holds:

T_1V_1^{\kappa-1}=T_2V_2^{\kappa-1}



Using the equation for the compressibility factor (r_C):

r_C =\displaystyle\frac{ V_1 }{ V_2 }



We obtain:

T_2 = T_1 r_C ^{ \kappa - 1}

ID:(11148, 0)



Gas heating

Equation

>Top, >Model


The temperature in state 3 (T_3) can be calculated from the temperature in state 2 (T_2), the compressibility factor (r_C) and the expandability factor (r_E) using:

T_3 =\displaystyle\frac{ r_C }{ r_E } T_2

r_C
Compressibility factor
-
8501
r_E
Expandability factor
-
8502
T_2
Temperature in state 2
K
8490
T_3
Temperature in state 3
K
8491
c_V = C_V / M c_p = C_p / M Q_H = C_p *( T_3 - T_2 ) Q_C = C_V *( T_4 - T_1 ) r_C = V_1 / V_2 r_E = V_1 / V_3 T_2 = T_1 r_C ^( kappa - 1) T_3 = T_4 r_E ^( kappa - 1) T_3 = T_2 * r_C / r_E eta = 1 -( r_E ^(- kappa )- r_C ^(- kappa ))/( kappa *(1/ r_E -1/ r_C ) T_4 * V_1 ^( kappa -1)= T_3 V_2 ^( kappa - 1) T_1 * V_1 ^( kappa -1)= T_2 V_2 ^( kappa - 1) eta =1-( T_4 - T_1 )/( kappa *( T_3 - T_2 )) Q_CkappaV_2r_Cetar_EV_1C_pC_VQ_HV_3Mc_pc_VT_1T_2T_3T_4

Since the heating occurs at constant pressure, Charles' law applies:

\displaystyle\frac{ V_i }{ T_i }=\displaystyle\frac{ V_f }{ T_f }



Therefore, the change of state (V_2, T_2) to (V_3, T_3) must satisfy:

\displaystyle\frac{T_2}{V_2} = \displaystyle\frac{T_3}{V_3}



Using the equations:

r_C =\displaystyle\frac{ V_1 }{ V_2 }



r_E =\displaystyle\frac{ V_1 }{ V_3 }



we can rewrite it as:

T_3 = \displaystyle\frac{V_3}{V_2} T_2 = \displaystyle\frac{V_3}{V_2} T_2 = \displaystyle\frac{V_3}{V_1} \displaystyle\frac{V_1}{V_2} T_2 = \displaystyle\frac{r_C}{r_E} T_2



In other words:

T_3 =\displaystyle\frac{ r_C }{ r_E } T_2

ID:(11150, 0)



Efficiency as a function of temperatures

Equation

>Top, >Model


The efficiency (\eta) can be calculated from the adiabatic index (\kappa), the temperature in state 1 (T_1), the temperature in state 2 (T_2), the temperature in state 3 (T_3) and 8492 using:

\eta =1-\displaystyle\frac{1}{ \kappa }\displaystyle\frac{ T_4 - T_1 }{ T_3 - T_2 }

\kappa
Adiabatic index
-
6661
\eta
Efficiency
-
5245
T_1
Temperature in state 1
K
8489
T_2
Temperature in state 2
K
8490
T_3
Temperature in state 3
K
8491
T_4
Temperature in state 4
K
8492
c_V = C_V / M c_p = C_p / M Q_H = C_p *( T_3 - T_2 ) Q_C = C_V *( T_4 - T_1 ) r_C = V_1 / V_2 r_E = V_1 / V_3 T_2 = T_1 r_C ^( kappa - 1) T_3 = T_4 r_E ^( kappa - 1) T_3 = T_2 * r_C / r_E eta = 1 -( r_E ^(- kappa )- r_C ^(- kappa ))/( kappa *(1/ r_E -1/ r_C ) T_4 * V_1 ^( kappa -1)= T_3 V_2 ^( kappa - 1) T_1 * V_1 ^( kappa -1)= T_2 V_2 ^( kappa - 1) eta =1-( T_4 - T_1 )/( kappa *( T_3 - T_2 )) Q_CkappaV_2r_Cetar_EV_1C_pC_VQ_HV_3Mc_pc_VT_1T_2T_3T_4

The efficiency relationship in terms of temperature is obtained using the definition of efficiency:

\eta = 1-\displaystyle\frac{ Q_C }{ Q_H }



and the supplied heat and absorbed heat quantities:

Q_H = C_p ( T_3 - T_2 )



Q_C = C_V ( T_4 - T_1 )



This leads us to the efficiency relationship in terms of temperature:

\eta =1-\displaystyle\frac{1}{ \kappa }\displaystyle\frac{ T_4 - T_1 }{ T_3 - T_2 }

ID:(11164, 0)



Efficiency based on compression and expansion factors

Equation

>Top, >Model


The calculation of the efficiency (\eta) is performed using the adiabatic index (\kappa), the compressibility factor (r_C) and the expandability factor (r_E), as follows:

\eta =1-\displaystyle\frac{1}{ \kappa }\displaystyle\frac{ r_E ^{- \kappa }- r_C ^{- \kappa }}{ r_E ^{-1}- r_C ^{-1}}

\kappa
Adiabatic index
-
6661
r_C
Compressibility factor
-
8501
\eta
Efficiency
-
5245
r_E
Expandability factor
-
8502
c_V = C_V / M c_p = C_p / M Q_H = C_p *( T_3 - T_2 ) Q_C = C_V *( T_4 - T_1 ) r_C = V_1 / V_2 r_E = V_1 / V_3 T_2 = T_1 r_C ^( kappa - 1) T_3 = T_4 r_E ^( kappa - 1) T_3 = T_2 * r_C / r_E eta = 1 -( r_E ^(- kappa )- r_C ^(- kappa ))/( kappa *(1/ r_E -1/ r_C ) T_4 * V_1 ^( kappa -1)= T_3 V_2 ^( kappa - 1) T_1 * V_1 ^( kappa -1)= T_2 V_2 ^( kappa - 1) eta =1-( T_4 - T_1 )/( kappa *( T_3 - T_2 )) Q_CkappaV_2r_Cetar_EV_1C_pC_VQ_HV_3Mc_pc_VT_1T_2T_3T_4

The value of the efficiency (\eta) can be calculated using the values the adiabatic index (\kappa), the temperature in state 1 (T_1), the temperature in state 2 (T_2), the temperature in state 3 (T_3), and the temperature in state 4 (T_4) in the following equation:

\eta =1-\displaystyle\frac{1}{ \kappa }\displaystyle\frac{ T_4 - T_1 }{ T_3 - T_2 }



Furthermore, the relationships between temperatures with the compressibility factor (r_C) and the expandability factor (r_E) are defined by the following equations:

T_2 = T_1 r_C ^{ \kappa - 1}



T_3 = T_4 r_E ^{ \kappa - 1}



T_3 =\displaystyle\frac{ r_C }{ r_E } T_2



Additionally, the value of the adiabatic index (\kappa) is used in the equation:

\kappa =\displaystyle\frac{ C_p }{ C_V }



These equations allow us to calculate the performance of a process following the Diesel cycle using the following equation:

\eta =1-\displaystyle\frac{1}{ \kappa }\displaystyle\frac{ r_E ^{- \kappa }- r_C ^{- \kappa }}{ r_E ^{-1}- r_C ^{-1}}

ID:(11156, 0)



Specific heat of gases at constant pressure

Equation

>Top, >Model


The specific heat at constant pressure (c_p) is equal to the heat capacity at constant pressure (C_p) divided by the mass (M):

c_p =\displaystyle\frac{ C_p }{ M }

C_p
Heat capacity at constant pressure
J/K
7937
M
Mass
kg
5215
c_p
Specific heat at constant pressure
J/kg K
9426
c_V = C_V / M c_p = C_p / M Q_H = C_p *( T_3 - T_2 ) Q_C = C_V *( T_4 - T_1 ) r_C = V_1 / V_2 r_E = V_1 / V_3 T_2 = T_1 r_C ^( kappa - 1) T_3 = T_4 r_E ^( kappa - 1) T_3 = T_2 * r_C / r_E eta = 1 -( r_E ^(- kappa )- r_C ^(- kappa ))/( kappa *(1/ r_E -1/ r_C ) T_4 * V_1 ^( kappa -1)= T_3 V_2 ^( kappa - 1) T_1 * V_1 ^( kappa -1)= T_2 V_2 ^( kappa - 1) eta =1-( T_4 - T_1 )/( kappa *( T_3 - T_2 )) Q_CkappaV_2r_Cetar_EV_1C_pC_VQ_HV_3Mc_pc_VT_1T_2T_3T_4

Following an analogy to the specific heat (c) for liquids and solids with the heat capacity (C) and the mass (M):

c =\displaystyle\frac{ C }{ M }



there is also a specific heat at constant pressure (c_p) for heating at constant pressure with the heat capacity at constant pressure (C_p):

c_p =\displaystyle\frac{ C_p }{ M }

ID:(11114, 0)



Specific heat of gases at constant volume

Equation

>Top, >Model


The specific heat of gases at constant volume (c_V) is equal to the heat capacity at constant volume (C_V) divided by the mass (M):

c_V =\displaystyle\frac{ C_V }{ M }

C_V
Heat capacity at constant volume
J/K
8481
M
Mass
kg
5215
c_V
Specific heat of gases at constant volume
J/kg K
6662
c_V = C_V / M c_p = C_p / M Q_H = C_p *( T_3 - T_2 ) Q_C = C_V *( T_4 - T_1 ) r_C = V_1 / V_2 r_E = V_1 / V_3 T_2 = T_1 r_C ^( kappa - 1) T_3 = T_4 r_E ^( kappa - 1) T_3 = T_2 * r_C / r_E eta = 1 -( r_E ^(- kappa )- r_C ^(- kappa ))/( kappa *(1/ r_E -1/ r_C ) T_4 * V_1 ^( kappa -1)= T_3 V_2 ^( kappa - 1) T_1 * V_1 ^( kappa -1)= T_2 V_2 ^( kappa - 1) eta =1-( T_4 - T_1 )/( kappa *( T_3 - T_2 )) Q_CkappaV_2r_Cetar_EV_1C_pC_VQ_HV_3Mc_pc_VT_1T_2T_3T_4

Continuing the analogy to the specific heat (c) for liquids and solids with the heat capacity (C) and the mass (M):

c =\displaystyle\frac{ C }{ M }



there is also a specific heat of gases at constant volume (c_V) for heating at constant volume with the heat capacity at constant volume (C_V):

c_V =\displaystyle\frac{ C_V }{ M }

ID:(11113, 0)