Utilisateur:


Transport de chaleur

Storyboard

Le transport de chaleur à travers un système composé de plusieurs milieux peut être estimé en analysant comment la chaleur est conduite dans chaque milieu et transférée à chaque interface. Le calcul est effectué en utilisant les paramètres spécifiques de chaque milieu et interface, ainsi que les températures aux deux extrémités du système, fournissant ainsi les températures à chaque interface.

>Modèle

ID:(1483, 0)



Mécanismes

Iframe

>Top



Code
Concept

Mécanismes

ID:(15277, 0)



Transport de chaleur

Concept

>Top


Le système de base comprend un transfert généré par a différence de température ($\Delta T$), qui se compose de a différence de température à l'interface interne ($\Delta T_i$), a différence de température dans le conducteur ($\Delta T_0$) et a différence de température à l'interface externe ($\Delta T_e$). Par conséquent :

$ \Delta T = \Delta T_i + \Delta T_0 + \Delta T_e $



Avec a débit de chaleur ($q$) responsable du transfert entre l'intérieur et le conducteur, utilisant le coefficient de transmission interne ($\alpha_i$) :

$ q = \alpha_i \Delta T_i $



La conduction implique a conductivité thermique ($\lambda$) et le longueur du pilote ($L$) :

$ q = \displaystyle\frac{ \lambda }{ L } \Delta T_0 $



Et le transfert du conducteur vers l'extérieur, avec le coefficient de transmission externe ($\alpha_e$), est représenté par :

$ q = \alpha_e \Delta T_e $



Tout cela est représenté graphiquement par :

ID:(7723, 0)



Transport de chaleur entre deux systèmes via un troisième fluide

Concept

>Top


A débit de chaleur ($q$) est calculé à partir de le coefficient de transport total (supports multiples, deux interfaces) ($k$) et a différence de température ($\Delta T$) en utilisant l'équation suivante :

$ q = k \Delta T $



où Le coefficient de transport total (supports multiples, deux interfaces) ($k$) est dérivé de le coefficient de transmission externe ($\alpha_e$), le coefficient de transmission interne ($\alpha_i$), a conductivité thermique ($\lambda$) et le longueur du pilote ($L$) grâce à cette équation :

$\displaystyle\frac{1}{ k }=\displaystyle\frac{1}{ \alpha_i }+\displaystyle\frac{1}{ \alpha_e }+\displaystyle\frac{ L }{ \lambda }$



Ceci est représenté dans l'image ci-dessous :

ID:(1675, 0)



Profil de température

Concept

>Top


Généralement, la variation de la température à l'intérieur d'un conducteur suit une tendance linéaire. Cependant, dans le cas de milieux gazeux et/ou liquides en contact avec le conducteur, il y a une variation progressive de la température du centre du milieu à la surface, comme représenté dans l'image suivante :



a température de la surface extérieure ($T_{es}$) dépend de a température extérieure ($T_e$), le coefficient de transport total ($k$), le coefficient de transmission externe ($\alpha_e$) et a différence de température ($\Delta T$):

$ T_{es} = T_e + \displaystyle\frac{ k }{ \alpha_e } \Delta T $



a température de la surface intérieure ($T_{is}$) est une fonction de a température intérieure ($T_i$) et le coefficient de transmission interne ($\alpha_i$):

$ T_{is} = T_i - \displaystyle\frac{ k }{ \alpha_i } \Delta T $



et a différence de température ($\Delta T$):

$ \Delta T = T_i - T_e $

ID:(7722, 0)



Transport du flux de chaleur total

Concept

>Top


Lorsque le matériel comprend plusieurs conducteurs connectés en série, le coefficient de transport total (supports multiples, deux interfaces) ($k$) est calculé à partir de le coefficient de transmission externe ($\alpha_e$), le coefficient de transmission interne ($\alpha_i$), a élément de conductivité thermique i ($\lambda_i$) et le longueur de l'élément i ($L_i$) en utilisant l'équation :

$\displaystyle\frac{1}{ k }=\displaystyle\frac{1}{ \alpha_i }+\displaystyle\frac{1}{ \alpha_e }+\sum_i\displaystyle\frac{ L_i }{ \lambda_i }$



Ce processus est illustré dans le diagramme suivant :

ID:(7721, 0)



Modèle

Top

>Top



Paramètres

Symbole
Texte
Variable
Valeur
Unités
Calculer
Valor MKS
Unités MKS
$\alpha_e$
alpha_e
Coefficient de transmission externe
W/m^2K
$\alpha_i$
alpha_i
Coefficient de transmission interne
W/m^2K
$k$
k
Coefficient de transport total
W/m K
$\lambda$
lambda
Conductivité thermique
W/m K
$L$
L
Longueur du pilote
m

Variables

Symbole
Texte
Variable
Valeur
Unités
Calculer
Valor MKS
Unités MKS
$dQ$
dQ
Chaleur transportée
J
$q$
q
Débit de chaleur
W/m^2
$\Delta T$
DT
Différence de température
K
$\Delta T_e$
DT_e
Différence de température à l'interface externe
K
$\Delta T_i$
DT_i
Différence de température à l'interface interne
K
$\Delta T_0$
DT_0
Différence de température dans le conducteur
K
$S$
S
Section
m^2
$T_{es}$
T_es
Température de la surface extérieure
K
$T_{is}$
T_is
Température de la surface intérieure
K
$T_e$
T_e
Température extérieure
K
$T_i$
T_i
Température intérieure
K
$dt$
dt
Variation temporelle
s

Calculs


D'abord, sélectionnez l'équation: à , puis, sélectionnez la variable: à

Calculs

Symbole
Équation
Résolu
Traduit

Calculs

Symbole
Équation
Résolu
Traduit

Variable Donnée Calculer Cible : Équation À utiliser




Équations

#
Équation

$\displaystyle\frac{1}{ k }=\displaystyle\frac{1}{ \alpha_i }+\displaystyle\frac{1}{ \alpha_e }+\displaystyle\frac{ L }{ \lambda }$

1/ k =1/ alpha_i + 1/ alpha_e + L / lambda


$ \Delta T = \Delta T_i + \Delta T_0 + \Delta T_e $

DT = DT_i + DT_0 + DT_e


$ \Delta T = T_i - T_e $

DT = T_i - T_e


$ \Delta T_0 = T_{is} - T_{es} $

DT_0 = T_is - T_es


$ \Delta T_e = T_{es} - T_e $

DT_e = T_es - T_e


$ \Delta T_i = T_i - T_{is} $

DT_i = T_i - T_is


$ q = \alpha_e \Delta T_e $

q = alpha_e * DT_e


$ q = \alpha_i \Delta T_i $

q = alpha_i * DT_i


$ q \equiv \displaystyle\frac{1}{ S }\displaystyle\frac{ dQ }{ dt }$

q = dQ /( S * dt )


$ q = k \Delta T $

q = k * DT


$ q = \displaystyle\frac{ \lambda }{ L } \Delta T_0 $

q = lambda * DT_0 / L


$ T_{es} = T_e + \displaystyle\frac{ k }{ \alpha_e } \Delta T $

T_es = T_e + k * DT / alpha_e


$ T_{is} = T_i - \displaystyle\frac{ k }{ \alpha_i } \Delta T $

T_is = T_i - k * DT / alpha_i

ID:(15336, 0)



Différence de température

Équation

>Top, >Modèle


A différence de température ($\Delta T$) est calculé en soustrayant a température extérieure ($T_e$) et a température intérieure ($T_i$), ce qui s'exprime comme suit :

$ \Delta T = T_i - T_e $

$\Delta T$
Différence de température
$K$
10161
$T_e$
Température extérieure
$K$
5207
$T_i$
Température intérieure
$K$
5208

ID:(15116, 0)



Différence de température entre le conducteur et le milieu

Équation

>Top, >Modèle


A différence de température à l'interface externe ($\Delta T_e$) est calculé en soustrayant a température de la surface extérieure ($T_{es}$) de a température extérieure ($T_e$) :

$ \Delta T_e = T_{es} - T_e $

$\Delta T_e$
Différence de température à l'interface externe
$K$
10167
$T_{es}$
Température de la surface extérieure
$K$
5214
$T_e$
Température extérieure
$K$
5207

ID:(15118, 0)



Différence de température entre le milieu et le conducteur

Équation

>Top, >Modèle


A différence de température à l'interface interne ($\Delta T_i$) est calculé en soustrayant a température de la surface intérieure ($T_{is}$) de a température intérieure ($T_i$) :

$ \Delta T_i = T_i - T_{is} $

$\Delta T_i$
Différence de température à l'interface interne
$K$
10166
$T_{is}$
Température de la surface intérieure
$K$
5212
$T_i$
Température intérieure
$K$
5208

ID:(15117, 0)



Différence de température de surface

Équation

>Top, >Modèle


Dans le cas d'un solide, et de manière similaire pour un liquide, nous pouvons décrire le système comme une structure d'atomes liés par quelque chose qui se comporte comme un ressort. Lorsque les deux extrémités ont des températures de une différence de température dans le conducteur ($\Delta T_0$), avec a température de la surface intérieure ($T_{is}$) et a température de la surface extérieure ($T_{es}$) :

$ \Delta T_0 = T_{is} - T_{es} $

$\Delta T_0$
Différence de température dans le conducteur
$K$
10165
$T_{es}$
Température de la surface extérieure
$K$
5214
$T_{is}$
Température de la surface intérieure
$K$
5212

ID:(15120, 0)



Variation totale de température

Équation

>Top, >Modèle


Dans le processus de transfert de chaleur, la température diminue progressivement du système ayant la plus haute température (interne) vers celui ayant la plus basse température (externe). Dans ce processus, elle diminue d'abord de la température moyenne interne à A différence de température à l'interface interne ($\Delta T_i$), puis à A différence de température dans le conducteur ($\Delta T_0$), et enfin à A différence de température à l'interface externe ($\Delta T_e$). La somme de ces trois variations équivaut à la chute totale, c'est-à-dire a différence de température ($\Delta T$), comme illustré ci-dessous :

$ \Delta T = \Delta T_i + \Delta T_0 + \Delta T_e $

$\Delta T$
Différence de température
$K$
10161
$\Delta T_e$
Différence de température à l'interface externe
$K$
10167
$\Delta T_i$
Différence de température à l'interface interne
$K$
10166
$\Delta T_0$
Différence de température dans le conducteur
$K$
10165

ID:(15115, 0)



Calcul de la conduction thermique

Équation

>Top, >Modèle


Le flux de chaleur ($q$) est une fonction de a conductivité thermique ($\lambda$), le longueur du pilote ($L$) et a différence de température dans le conducteur ($\Delta T_0$) :

$ q = \displaystyle\frac{ \lambda }{ L } \Delta T_0 $

$\lambda$
Conductivité thermique
$J/m s K$
5204
$q$
Débit de chaleur
$W/m^2$
10178
$\Delta T_0$
Différence de température dans le conducteur
$K$
10165
$L$
Longueur du pilote
$m$
5206

ID:(7712, 0)



Calcul du transport thermique total par un conducteur

Équation

>Top, >Modèle


De cette manière, nous établissons une relation qui nous permet de calculer a débit de chaleur ($q$) en fonction de le coefficient de transport total (supports multiples, deux interfaces) ($k$) et a différence de température ($\Delta T$) :

$ q = k \Delta T $

$k$
Coefficient de transport total
$W/m^2K$
5174
$q$
Débit de chaleur
$W/m^2$
10178
$\Delta T$
Différence de température
$K$
10161

Avec a différence de température à l'interface interne ($\Delta T_i$), a différence de température dans le conducteur ($\Delta T_0$), a différence de température à l'interface externe ($\Delta T_e$), et a différence de température ($\Delta T$), nous obtenons

$ \Delta T = \Delta T_i + \Delta T_0 + \Delta T_e $



qui peut être réécrit avec a chaleur transportée ($dQ$), a variation temporelle ($dt$), a section ($S$)

$ q = \alpha_i \Delta T_i $



$ q = \alpha_e \Delta T_e $



et avec a conductivité thermique ($\lambda$) et le longueur du pilote ($L$)

$ q = \displaystyle\frac{ \lambda }{ L } \Delta T_0 $



et

$\displaystyle\frac{1}{ k }=\displaystyle\frac{1}{ \alpha_i }+\displaystyle\frac{1}{ \alpha_e }+\displaystyle\frac{ L }{ \lambda }$



comme

$\Delta T = \Delta T_i + \Delta T_0 + \Delta T_e = \displaystyle\frac{1}{S} \frac{dQ}{dt} \left(\displaystyle\frac{1}{\alpha_i} + \displaystyle\frac{1}{\alpha_e} + \displaystyle\frac{L}{\lambda}\right) = \displaystyle\frac{1}{Sk} \displaystyle\frac{dQ}{dt}$



aboutissant à

$ q = k \Delta T $

.

ID:(7716, 0)



Calcul de la transmission thermique au conducteur

Équation

>Top, >Modèle


De cette manière, nous établissons une relation qui nous permet de calculer a débit de chaleur ($q$) en fonction de a différence de température à l'interface interne ($\Delta T_i$) et le coefficient de transmission interne ($\alpha_i$) :

$ q = \alpha_i \Delta T_i $

$\alpha_i$
Coefficient de transmission interne
$W/m^2K$
10163
$q$
Débit de chaleur
$W/m^2$
10178
$\Delta T_i$
Différence de température à l'interface interne
$K$
10166

ID:(15113, 0)



Calcul du transfert de chaleur du conducteur

Équation

>Top, >Modèle


De cette manière, nous établissons une relation qui nous permet de calculer a débit de chaleur ($q$) en fonction de a différence de température à l'interface externe ($\Delta T_e$) et le coefficient de transmission externe ($\alpha_e$) :

$ q = \alpha_e \Delta T_e $

$\alpha_e$
Coefficient de transmission externe
$W/m^2K$
10162
$q$
Débit de chaleur
$W/m^2$
10178
$\Delta T_e$
Différence de température à l'interface externe
$K$
10167

ID:(15114, 0)



Température sur la surface externe du conducteur

Équation

>Top, >Modèle


A température de la surface extérieure ($T_{es}$) n'est pas égal à la température du milieu, qui est a température extérieure ($T_e$). Cette température peut être calculée à partir de a différence de température ($\Delta T$), le coefficient de transport total (supports multiples, deux interfaces) ($k$), et le coefficient de transmission externe ($\alpha_e$) en utilisant la formule suivante :

$ T_{es} = T_e + \displaystyle\frac{ k }{ \alpha_e } \Delta T $

$\alpha_e$
Coefficient de transmission externe
$W/m^2K$
10162
$k$
Coefficient de transport total
$W/m^2K$
5174
$\Delta T$
Différence de température
$K$
10161
$T_{es}$
Température de la surface extérieure
$K$
5214
$T_e$
Température extérieure
$K$
5207

Avec a chaleur transportée ($dQ$), a variation temporelle ($dt$), a section ($S$), a différence de température ($\Delta T$) et le coefficient de transport total (supports multiples, deux interfaces) ($k$), nous obtenons

$ q = k \Delta T $



ce qui, avec le coefficient de transmission externe ($\alpha_e$) et a différence de température à l'interface externe ($\Delta T_e$)

$ q = \alpha_e \Delta T_e $



aboutit à

$k\Delta T = \alpha_e \Delta T_e$



et avec a température extérieure ($T_e$) et a température de la surface extérieure ($T_{es}$) et

$ \Delta T_e = T_{es} - T_e $



aboutit à

$ T_{es} = T_e + \displaystyle\frac{ k }{ \alpha_e } \Delta T $

ID:(15122, 0)



Température sur la surface intérieure du conducteur

Équation

>Top, >Modèle


A température de la surface intérieure ($T_{is}$) n'est pas égal à la température du milieu lui-même, qui est a température intérieure ($T_i$). Cette température peut être calculée à partir de a différence de température ($\Delta T$), le coefficient de transport total (supports multiples, deux interfaces) ($k$) et le coefficient de transmission interne ($\alpha_i$) en utilisant la formule suivante :

$ T_{is} = T_i - \displaystyle\frac{ k }{ \alpha_i } \Delta T $

$\alpha_i$
Coefficient de transmission interne
$W/m^2K$
10163
$k$
Coefficient de transport total
$W/m^2K$
5174
$\Delta T$
Différence de température
$K$
10161
$T_{is}$
Température de la surface intérieure
$K$
5212
$T_i$
Température intérieure
$K$
5208

Avec a chaleur transportée ($dQ$), a variation temporelle ($dt$), a section ($S$), a différence de température ($\Delta T$) et le coefficient de transport total (supports multiples, deux interfaces) ($k$), nous avons

$ q = k \Delta T $



ce qui, avec le coefficient de transmission interne ($\alpha_i$) et a différence de température à l'interface interne ($\Delta T_i$)

$ q = \alpha_i \Delta T_i $



aboutit à

$k\Delta T = \alpha_i \Delta T_i$



et avec a température intérieure ($T_i$) et a température de la surface intérieure ($T_{is}$) et

$ \Delta T_i = T_i - T_{is} $



aboutit à

$ T_{is} = T_i - \displaystyle\frac{ k }{ \alpha_i } \Delta T $

ID:(15121, 0)



Constante de transport totale (un support, deux interfaces)

Équation

>Top, >Modèle


La valeur de le coefficient de transport total ($k$) dans l'équation de transport est déterminée en utilisant le coefficient de transmission externe ($\alpha_e$), le coefficient de transmission interne ($\alpha_i$), a conductivité thermique ($\lambda$) et le longueur du pilote ($L$) comme suit :

$\displaystyle\frac{1}{ k }=\displaystyle\frac{1}{ \alpha_i }+\displaystyle\frac{1}{ \alpha_e }+\displaystyle\frac{ L }{ \lambda }$

$\alpha_e$
Coefficient de transmission externe
$W/m^2K$
10162
$\alpha_i$
Coefficient de transmission interne
$W/m^2K$
10163
$k$
Coefficient de transport total
$W/m^2K$
5174
$\lambda$
Conductivité thermique
$J/m s K$
5204
$L$
Longueur du pilote
$m$
5206

Avec a différence de température à l'interface interne ($\Delta T_i$), a différence de température dans le conducteur ($\Delta T_0$), a différence de température à l'interface externe ($\Delta T_e$) et a différence de température ($\Delta T$), nous obtenons

$ \Delta T = \Delta T_i + \Delta T_0 + \Delta T_e $



qui peut être réécrit avec a chaleur transportée ($dQ$), a variation temporelle ($dt$), a section ($S$)

$ q = \alpha_i \Delta T_i $



$ q = \alpha_e \Delta T_e $



et avec a conductivité thermique ($\lambda$) et le longueur du pilote ($L$)

$ q = \displaystyle\frac{ \lambda }{ L } \Delta T_0 $



comme

$\Delta T_i + \Delta T_0 + \Delta T_e = \displaystyle\frac{1}{S} \displaystyle\frac{dQ}{dt} \left(\displaystyle\frac{1}{\alpha_i} + \displaystyle\frac{1}{\alpha_e} + \displaystyle\frac{L}{\lambda}\right)$



nous pouvons donc définir un coefficient combiné comme

$\displaystyle\frac{1}{ k }=\displaystyle\frac{1}{ \alpha_i }+\displaystyle\frac{1}{ \alpha_e }+\displaystyle\frac{ L }{ \lambda }$

ID:(3486, 0)



Densité du flux thermique

Équation

>Top, >Modèle


A débit de chaleur ($q$) est défini en fonction de a chaleur transportée ($dQ$), a variation temporelle ($dt$), et a section ($S$) comme suit :

$ q \equiv \displaystyle\frac{1}{ S }\displaystyle\frac{ dQ }{ dt }$

$dQ$
Chaleur transportée
$J$
10159
$q$
Débit de chaleur
$W/m^2$
10178
$S$
Section
$m^2$
5205
$dt$
Variation temporelle
$s$
10160

ID:(15133, 0)