Proporciones de tamaño y posición de lentes concavos
Ecuación
Para cualquier lente se puede dibujar haces característicos con los cuales se puede por similitud mostrar que los tamaños del objeto y la imagen están en la misma proporción que sus distancias hasta el elemento óptico (lente o espejo).
Si el objeto tiene un tamaño
$\displaystyle\frac{ a_o }{ a_{lc} }=\displaystyle\frac{ s_o }{ s_{lc} }$ |
ID:(3346, 0)
Posición y foco de lentes concavos
Ecuación
Por similitud de los triángulos de los tamaños del objeto y la imagen y las posiciones del objeto y foco permite por similitud de triángulos mostrar que:
$\displaystyle\frac{1}{ f_{lc} }=\displaystyle\frac{1}{ s_o }+\displaystyle\frac{1}{ s_{lc} }$ |
Una relación se puede armar con los triángulos del lado del objeto. En este caso la similitud nos permite escribir que el tamaño del objeto
$\displaystyle\frac{a_o}{s_o-f}=\displaystyle\frac{a_i}{f}$
Con la relación de similitud de los triángulos
$\displaystyle\frac{ a_o }{ a_{lc} }=\displaystyle\frac{ s_o }{ s_{lc} }$ |
se puede mostrar que se cumple:
$\displaystyle\frac{1}{ f_{lc} }=\displaystyle\frac{1}{ s_o }+\displaystyle\frac{1}{ s_{lc} }$ |
ID:(3347, 0)
Formula simplificada del fabricante de lentes
Ecuación
En su versión simplificada (que no depende del grosor del lente) el foco de un lente
$\displaystyle\frac{1}{ f_0 }=( n -1)\left(\displaystyle\frac{1}{ R_1 }+\displaystyle\frac{1}{ R_2 }\right)$ |
ID:(10924, 0)
Imagen del primer como objetivo de un segundo lente
Ecuación
La imagen generada por un primer lente de un tamaño
$ a_{i1} = a_{o2} $ |
ID:(10927, 0)