Lenses

Storyboard

Lenses are means, such as glass, which allows light to be refracted by modifying the images that are created of objects both in size and in the place they are generated.

>Model

ID:(1372, 0)



Proportions size and position of concave lens

Equation

>Top, >Model


For any lens you can draw characteristic beams with which you can similarly show that the sizes of the object and the image are in the same proportion as their distances to the optical element (lens or mirror).

If the object has a size a_o, it is at a distance s_o of the lens, the image is a size a_i and is at a distance s_i, by similarity of the triangles it can be shown that

$\displaystyle\frac{ a_o }{ a_{lc} }=\displaystyle\frac{ s_o }{ s_{lc} }$

$s_{lc}$
Distancia de la imagen del lente cóncavo
$m$
5155
$s_o$
Distancia del objeto al lente cóncavo
$m$
5154
$a_o$
Object Size
$m$
5152
$a_{lc}$
Tamaño de la imagen en un lente cóncavo
$m$
5153

ID:(3346, 0)



Position and focus of concave lens

Equation

>Top, >Model


Por similitud de los triángulos de los tamaños del objeto y la imagen y las posiciones del objeto y foco permite por similitud de triángulos mostrar que:

$\displaystyle\frac{1}{ f_{lc} }=\displaystyle\frac{1}{ s_o }+\displaystyle\frac{1}{ s_{lc} }$

$s_{lc}$
Distancia de la imagen del lente cóncavo
$m$
5155
$s_o$
Distancia del objeto al lente cóncavo
$m$
5154
$f_{lc}$
Foco del lente cóncavo
$m$
5156

Una relación se puede armar con los triángulos del lado del objeto. En este caso la similitud nos permite escribir que el tamaño del objeto a_o es a la distancia del objeto s_o al foco f es como el tamaño de la imagen a_i es a la distancia del foco f:\\n\\n

$\displaystyle\frac{a_o}{s_o-f}=\displaystyle\frac{a_i}{f}$



Con la relación de similitud de los triángulos

$\displaystyle\frac{ a_o }{ a_{lc} }=\displaystyle\frac{ s_o }{ s_{lc} }$



se puede mostrar que se cumple:

$\displaystyle\frac{1}{ f_{lc} }=\displaystyle\frac{1}{ s_o }+\displaystyle\frac{1}{ s_{lc} }$

ID:(3347, 0)



Formula simplificada del fabricante de lentes

Equation

>Top, >Model


En su versión simplificada (que no depende del grosor del lente) el foco de un lente f se puede calcular del indice de refracción del vidrio n y los radios de curvatura R_1 y R_2 según

$\displaystyle\frac{1}{ f_0 }=( n -1)\left(\displaystyle\frac{1}{ R_1 }+\displaystyle\frac{1}{ R_2 }\right)$

$n$
Air-Lens Refractive Index
$-$
5157
$f_0$
Foco general del lente
$m$
9949
$R_2$
Radio of the Lens, Image Side
$m$
5160
$R_1$
Radio of the Lens, Source Side
$m$
5159

ID:(10924, 0)



Imagen del primer como objetivo de un segundo lente

Equation

>Top, >Model


La imagen generada por un primer lente de un tamaño a_{i1} representa el objeto de un segundo lente a_{o2} por lo que:

$ a_{i1} = a_{o2} $

ID:(10927, 0)