Proportionen der Größe und Position von einer konkaven Linse
Gleichung
Für jedes Objektiv können Sie charakteristische Strahlen zeichnen, mit denen Sie auf ähnliche Weise zeigen können, dass die Größen des Objekts und des Bildes im gleichen Verhältnis stehen wie ihre Abstände zum optischen Element (Objektiv oder Spiegel).
Wenn das Objekt eine Größe
$\displaystyle\frac{ a_o }{ a_{lc} }=\displaystyle\frac{ s_o }{ s_{lc} }$ |
ID:(3346, 0)
Position und Fokus von einer Konvexen Linse
Gleichung
Por similitud de los triángulos de los tamaños del objeto y la imagen y las posiciones del objeto y foco permite por similitud de triángulos mostrar que:
$\displaystyle\frac{1}{ f_{lc} }=\displaystyle\frac{1}{ s_o }+\displaystyle\frac{1}{ s_{lc} }$ |
Una relación se puede armar con los triángulos del lado del objeto. En este caso la similitud nos permite escribir que el tamaño del objeto
$\displaystyle\frac{a_o}{s_o-f}=\displaystyle\frac{a_i}{f}$
Con la relación de similitud de los triángulos
$\displaystyle\frac{ a_o }{ a_{lc} }=\displaystyle\frac{ s_o }{ s_{lc} }$ |
se puede mostrar que se cumple:
$\displaystyle\frac{1}{ f_{lc} }=\displaystyle\frac{1}{ s_o }+\displaystyle\frac{1}{ s_{lc} }$ |
ID:(3347, 0)
Formula simplificada del fabricante de lentes
Gleichung
En su versión simplificada (que no depende del grosor del lente) el foco de un lente
$\displaystyle\frac{1}{ f_0 }=( n -1)\left(\displaystyle\frac{1}{ R_1 }+\displaystyle\frac{1}{ R_2 }\right)$ |
ID:(10924, 0)
Imagen del primer como objetivo de un segundo lente
Gleichung
La imagen generada por un primer lente de un tamaño
$ a_{i1} = a_{o2} $ |
ID:(10927, 0)