Instantaneous flow per section

Storyboard

>Model

ID:(2070, 0)



Mechanisms

Iframe

>Top



Code
Concept

Mechanisms

ID:(15713, 0)



Instant Volume Flow

Concept

>Top


The definition of the volume flow ($J_V$) is the volume element ($\Delta V$) over the time elapsed ($\Delta t$):

$ J_V =\displaystyle\frac{ \Delta V }{ \Delta t }$



which, in the limit of an infinitesimal time interval, corresponds to the derivative of the volume ($V$) with respect to the time ($t$):

$ J_V =\displaystyle\frac{ dV }{ dt }$

ID:(15718, 0)



Volume Flow and its Speed

Concept

>Top


The volume ($V$) for a tube with constant the section Tube ($S$) and a position ($s$) is

$ V = s S $



If the section Tube ($S$) is constant, the temporal derivative will be

$\displaystyle\frac{dV}{dt} = S\displaystyle\frac{ds}{dt}$



thus, with the volume flow ($J_V$) defined by

$ J_V =\displaystyle\frac{ dV }{ dt }$



and with the flux density ($j_s$) associated with the position ($s$) via

$ j_s =\displaystyle\frac{ ds }{ dt }$



it is concluded that

$ J_V = S j_s $

ID:(15717, 0)



Flow for inhomogeneous flux density

Concept

>Top


In the case that the flux density ($j_s$) is constant, the volume flow ($J_V$) can be calculated using the section or Area ($S$) according to:

$ J_V = S j_s $



If the flux density ($j_s$) varies, sufficiently small sectional elements $dS$ can be considered so that the equation remains valid in the sense that the contribution to flow is:

$dJ_V = j_s dS$



Integrating this expression over the entire section results in

$ J_V =\displaystyle\int j_s dS $

ID:(15719, 0)



Model

Top

>Top



Calculations

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$j_s$
j_s
Flux density
m^3/s
$s$
s
Position
m
$S_d$
S_d
Section presenting the planet
m^2
$S$
S
Section Tube
m^2
$t$
t
Time
s
$V$
V
Volume
m^3
$J_V$
J_V
Volume flow
m^3/s
$V$
V
Volumen
m^3

Parameters

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units


First, select the equation: to , then, select the variable: to

Calculations

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

Variable Given Calculate Target : Equation To be used


Equation

#
Equation

$ j_s =\displaystyle\frac{ ds }{ dt }$

j_s = @DIFF( s , t , 1 )


$ J_V =\displaystyle\frac{ dV }{ dt }$

J_V = @DIFF( V , t , 1 )


$ J_V =\displaystyle\int j_s dS $

J_V = @INT( j_s , S )


$ J_V = S j_s $

J_V = S * j_s


$ V = s S $

V = h * S

ID:(15714, 0)



Instant Volume Flow

Equation

>Top, >Model


The volume flow ($J_V$) corresponds to the quantity volume ($V$) that flows through the channel during a time ($t$). Therefore, we have:

$ J_V =\displaystyle\frac{ dV }{ dt }$

$t$
Time
$s$
10148
$V$
Volume
$m^3$
9847
$J_V$
Volume flow
$m^3/s$
5448

The definition of the volume flow ($J_V$) is the volume element ($\Delta V$) over the time elapsed ($\Delta t$):

$ J_V =\displaystyle\frac{ \Delta V }{ \Delta t }$



which, in the limit of an infinitesimal time interval, corresponds to the derivative of the volume ($V$) with respect to the time ($t$):

$ J_V =\displaystyle\frac{ dV }{ dt }$

ID:(12713, 0)



Element volume

Equation

>Top, >Model


The volume ($V$) is calculated by multiplying the section Tube ($S$) with the position ($s$) along the tube:

$ V = s S $

$ V = h S $

$h$
$s$
Position
$m$
9849
$S$
Section presenting the planet
$m^2$
6700
$V$
Volumen
$m^3$
6699

ID:(4876, 0)



Instantaneous flux density

Equation

>Top, >Model


The flux density ($j_s$) is related to the position ($s$), which is the fluid position at the time ($t$), through the following equation:

$ j_s =\displaystyle\frac{ ds }{ dt }$

$j_s$
Flux density
$m^3/s$
7220
$s$
Position
$m$
9849
$t$
Time
$s$
10148

ID:(12714, 0)



Volume Flow and its Speed

Equation

>Top, >Model


A flux density ($j_s$) can be expressed in terms of the volume flow ($J_V$) using the section or Area ($S$) through the following formula:

$ J_V = S j_s $

$j_s$
Flux density
$m^3/s$
7220
$S$
Section Tube
$m^2$
6267
$J_V$
Volume flow
$m^3/s$
5448

The volume ($V$) for a tube with constant the section Tube ($S$) and a position ($s$) is

$ V = s S $



If the section Tube ($S$) is constant, the temporal derivative will be

$\displaystyle\frac{dV}{dt} = S\displaystyle\frac{ds}{dt}$



thus, with the volume flow ($J_V$) defined by

$ J_V =\displaystyle\frac{ dV }{ dt }$



and with the flux density ($j_s$) associated with the position ($s$) via

$ j_s =\displaystyle\frac{ ds }{ dt }$



it is concluded that

$ J_V = S j_s $

ID:(15716, 0)



Flow for inhomogeneous flux density

Equation

>Top, >Model


If the flux density ($j_s$) is not constant and varies across the flow tube section the volume flow ($J_V$), it is calculated as the integral over that section:

$ J_V =\displaystyle\int j_s dS $

$j_s$
Flux density
$m^3/s$
7220
$J_V$
Volume flow
$m^3/s$
5448

In the case that the flux density ($j_s$) is constant, the volume flow ($J_V$) can be calculated using the section or Area ($S$) according to:

$ J_V = S j_s $



If the flux density ($j_s$) varies, sufficiently small sectional elements $dS$ can be considered so that the equation remains valid in the sense that the contribution to flow is:

$dJ_V = j_s dS$



Integrating this expression over the entire section results in

$ J_V =\displaystyle\int j_s dS $

ID:(15712, 0)