Parallel resistance

Storyboard

When the resistors are connected in parallel, they are all exposed to the same potential difference which, by Ohm's law, generates different currents. The total current is the sum of the partial currents, so the total resistance is the inverse of the sum of the inverse of the individual resistances.

>Model

ID:(1397, 0)



Parallel resistors (Diagram)

Image

>Top


The diagram representing resistors connected in parallel has the following form:
 

ID:(7861, 0)



Resistance in parallel

Equation

>Top, >Model


Al conectarse resistencias R_i en paralelo la diferencia de potencial es para todas iguales pero la corrientes son dependen de la resistencia respectiva y tomarán un valor I_i. La suma de las corrientes individuales será igual a la corriente total I:

$I=\displaystyle\sum_iI_i$



Como en cada resistencia se cumple la ley de Ohm

$\Delta\varphi=R_iI_i$



la suma de corrientes se puede escribir como

$I=\displaystyle\sum_i\displaystyle\frac{\Delta\varphi}{R_i}$



Por ello se puede definir una resistencia total para el caso de suma paralela es con de la forma

$\displaystyle\frac{1}{ R_p }=\displaystyle\sum_i\displaystyle\frac{1}{ R_i }$

ID:(225, 0)



Sum of resistors in parallel (2)

Equation

>Top, >Model


The parallel combination of the hydraulic Resistance 1 ($R_{h1}$) and the hydraulic Resistance 2 ($R_{h2}$) results in a total equivalent of the total hydraulic resistance in series ($R_{st}$):

$\displaystyle\frac{1}{ R_{pt} }=\displaystyle\frac{1}{ R_{h1} }+\displaystyle\frac{1}{ R_{h2} }$

$R_{h1}$
Hydraulic Resistance 1
$kg/m^4s$
5425
$R_{h2}$
Hydraulic Resistance 2
$kg/m^4s$
5426
$R_{pt}$
Total hydraulic resistance in parallel
$kg/m^4s$
5429

ID:(3858, 0)



Sum of resistors in parallel (3)

Equation

>Top, >Model


The parallel combination of the hydraulic Resistance 1 ($R_{h1}$), the hydraulic Resistance 2 ($R_{h2}$), and the hydraulic Resistance 3 ($R_{h3}$) results in a total equivalent of the total hydraulic resistance in series ($R_{st}$):

$\displaystyle\frac{1}{ R_{pt} }=\displaystyle\frac{1}{ R_{h1} }+\displaystyle\frac{1}{ R_{h2} }+\displaystyle\frac{1}{ R_{h3} }$

$R_{h1}$
Hydraulic Resistance 1
$kg/m^4s$
5425
$R_{h2}$
Hydraulic Resistance 2
$kg/m^4s$
5426
$R_{h3}$
Hydraulic Resistance 3
$kg/m^4s$
5427
$R_{pt}$
Total hydraulic resistance in parallel
$kg/m^4s$
5429

ID:(3859, 0)



Hydraulic conductance in series (2)

Equation

>Top, >Model


The series combination of the hydraulic conductance 1 ($G_{h1}$) and the hydraulic conductance 2 ($G_{h2}$) results in a total sum of the total Series Hydraulic Conductance ($G_{st}$):

$\displaystyle\frac{1}{ G_{st} }=\displaystyle\frac{1}{ G_{h1} }+\displaystyle\frac{1}{ G_{h2} }$

$G_{h1}$
Hydraulic conductance 1
$m^4s/kg$
10456
$G_{h2}$
Hydraulic conductance 2
$m^4s/kg$
10457
$G_{st}$
Total Series Hydraulic Conductance
$m^4s/kg$
10135

ID:(3860, 0)



Hydraulic conductance in series (3)

Equation

>Top, >Model


The series combination of the hydraulic conductance 1 ($G_{h1}$), the hydraulic conductance 2 ($G_{h2}$) and the hydraulic conductance 3 ($G_{h3}$) results in a total sum of the total Series Hydraulic Conductance ($G_{st}$):

$\displaystyle\frac{1}{ G_{st} }=\displaystyle\frac{1}{ G_{h1} }+\displaystyle\frac{1}{ G_{h2} }+\displaystyle\frac{1}{ G_{h3} }$

$G_{h1}$
Hydraulic conductance 1
$m^4s/kg$
10456
$G_{h2}$
Hydraulic conductance 2
$m^4s/kg$
10457
$G_{h3}$
Hydraulic conductance 3
$m^4s/kg$
10458
$G_{st}$
Total Series Hydraulic Conductance
$m^4s/kg$
10135

ID:(3861, 0)