Resistors in series

Storyboard

When several resistors are connected in series, the current is the same in all resistors due to the conservation of loads. Therefore, in each resistance a potential drop equal to the electrical resistance multiplied by the current is experienced and whose sum must be the total potential difference. Therefore, the total resistance of a series of resistors is equal to the sum of these.

>Model

ID:(1396, 0)



Series resistance (Diagram)

Image

>Top


The diagram representing resistors connected in series has the following form:

ID:(7862, 0)



Series resistance

Equation

>Top, >Model


Al conectarse resistencias R_i en serie en cada una ocurrirá una caída de potencial \Delta\varphi_i cuya suma será igual a la diferencia de potencial total

$\Delta\varphi=\displaystyle\sum_i \Delta\varphi_i$



Como la corriente I es igual en todas las resistencias la ley de Ohm en la i-esima resistencia será

$\Delta\varphi_i=R_i I$



Si se reemplaza esta expresión en la suma de las diferencias de potencial se obtiene

$\Delta\varphi=\displaystyle\sum_i R_iI$



por lo que la resistencia en serie se calcula como la suma de las resistencias individuales con :

$ R_s =\displaystyle\sum_ i R_i $

ID:(3215, 0)



Sum of resistors in series (2)

Equation

>Top, >Model


The series combination of the hydraulic Resistance 1 ($R_{h1}$) and the hydraulic Resistance 2 ($R_{h2}$) results in a total sum of the total hydraulic resistance in series ($R_{st}$):

$ R_{st} = R_{h1} + R_{h2} $

$R_{h1}$
Hydraulic Resistance 1
$kg/m^4s$
5425
$R_{h2}$
Hydraulic Resistance 2
$kg/m^4s$
5426
$R_{st}$
Total hydraulic resistance in series
$kg/m^4s$
5428

ID:(3854, 0)



Sum of resistors in series (3)

Equation

>Top, >Model


The series combination of the hydraulic Resistance 1 ($R_{h1}$), the hydraulic Resistance 2 ($R_{h2}$) and the hydraulic Resistance 3 ($R_{h3}$) results in a total sum of the total hydraulic resistance in series ($R_{st}$):

$ R_{st} = R_{h1} + R_{h2} + R_{h3} $

$R_{h1}$
Hydraulic Resistance 1
$kg/m^4s$
5425
$R_{h2}$
Hydraulic Resistance 2
$kg/m^4s$
5426
$R_{h3}$
Hydraulic Resistance 3
$kg/m^4s$
5427
$R_{st}$
Total hydraulic resistance in series
$kg/m^4s$
5428

None

ID:(3855, 0)



Hydraulic conductance in parallel (2)

Equation

>Top, >Model


The parallel connection of the hydraulic conductance 1 ($G_{h1}$), and the hydraulic conductance 2 ($G_{h2}$) results in an equivalent combination of the parallel total hydraulic conductance ($G_{pt}$):

$ G_{pt} = G_{h1} + G_{h2} $

$G_{h1}$
Hydraulic conductance 1
$m^4s/kg$
10456
$G_{h2}$
Hydraulic conductance 2
$m^4s/kg$
10457
$G_{pt}$
Parallel total hydraulic conductance
$m^4s/kg$
10136

None

ID:(3856, 0)



Hydraulic conductance in parallel (3)

Equation

>Top, >Model


The parallel connection of the hydraulic conductance 1 ($G_{h1}$), the hydraulic conductance 2 ($G_{h2}$), and the hydraulic conductance 3 ($G_{h3}$) results in an equivalent combination of the parallel total hydraulic conductance ($G_{pt}$):

$ G_{pt} = G_{h1} + G_{h2} + G_{h3} $

$G_{h1}$
Hydraulic conductance 1
$m^4s/kg$
10456
$G_{h2}$
Hydraulic conductance 2
$m^4s/kg$
10457
$G_{h3}$
Hydraulic conductance 3
$m^4s/kg$
10458
$G_{pt}$
Parallel total hydraulic conductance
$m^4s/kg$
10136

ID:(3857, 0)