Interior flow and erosion

Storyboard

Internal flow occurs through the capillaries formed between the soil particles. Whenever these capillaries have dimensions greater than those of the small clay plates, there is a risk that these clay particles may be carried away by this flow. If this happens, the soil could lose some of its clay content, which would impact its mechanical properties, stability, and support for organic life.

>Model

ID:(379, 0)



Flow in Soil and Effect on Plates

Description

>Top


ID:(18, 0)



Current on Porosity

Description

>Top


ID:(1237, 0)



Energy density

Equation

>Top, >Model


Since a fluid or gas is a continuum, the concept of energy can no longer be associated with a specific mass. However, it is possible to consider the energy contained in a volume of the continuum, and by dividing it by the volume itself, we obtain the energy density ($e$). Therefore, with the density ($\rho$), the speed on a cylinder radio ($v$), the column height ($h$), the gravitational Acceleration ($g$), and the water column pressure ($p$), we have:

$ e =\displaystyle\frac{1}{2} \rho v ^2+ \rho g h + p $

$h$
Column height
$m$
5406
$\rho$
Density
$kg/m^3$
5342
$e$
Energy density
$J/m^3$
4932
$g$
Gravitational Acceleration
9.8
$m/s^2$
5310
$v$
Speed on a cylinder radio
$m/s$
5449
$p$
Water column pressure
$Pa$
10114

Another useful equation is the one corresponding to the conservation of energy, which is applicable in cases where viscosity, a process that leads to energy loss, can be neglected. If we consider the classic energy equation $E$, which takes into account kinetic energy, gravitational potential energy, and an external force displacing the liquid over a distance $\Delta z$, it can be expressed as:

$E=\displaystyle\frac{m}{2}v^2+mgh+F\Delta x$



If we consider the energy within a volume $\Delta x\Delta y\Delta z$, we can replace the mass with:

$m=\rho \Delta x\Delta y\Delta z$



And since pressure is given by:

$F=p \Delta S =p \Delta y\Delta z$



We obtain the equation for energy density:

$ e =\displaystyle\frac{1}{2} \rho v ^2+ \rho g h + p $

which corresponds to the Bernoulli equation.

ID:(3159, 0)



General Bernoulli equation

Equation

>Top, >Model


With the mean Speed of Fluid in Point 1 ($v_1$), the height or depth 1 ($h_1$), and the pressure in column 1 ($p_1$) representing the velocity, height, and pressure at point 1, respectively, and the mean Speed of Fluid in Point 2 ($v_2$), the height or depth 2 ($h_2$), and the pressure in column 2 ($p_2$) representing the velocity, height, and pressure at point 2, respectively, we have:

$\displaystyle\frac{1}{2} \rho v_1 ^2+ \rho g h_1 + p_1 =\displaystyle\frac{1}{2} \rho v_2 ^2+ \rho g h_2 + p_2 $

$\rho$
Density
$kg/m^3$
5342
$g$
Gravitational Acceleration
9.8
$m/s^2$
5310
$h_1$
Height or depth 1
$m$
6259
$h_2$
Height or depth 2
$m$
6260
$v_1$
Mean Speed of Fluid in Point 1
$m/s$
5415
$v_2$
Mean Speed of Fluid in Point 2
$m/s$
5416
$p_1$
Pressure in column 1
$Pa$
6261
$p_2$
Pressure in column 2
$Pa$
6262

If we assume that the energy density ($e$) is conserved, we can state that for a cell where the average velocity is the speed on a cylinder radio ($v$), the density is the density ($\rho$), the pressure is the water column pressure ($p$), the height is the column height ($h$), and the gravitational acceleration is the gravitational Acceleration ($g$), the following holds:

$ e =\displaystyle\frac{1}{2} \rho v ^2+ \rho g h + p $



At point 1, this equation will be equal to the same equation at point 2:

$e(v_1,p_1,h_1)=e(v_2,p_2,h_2)$



where the mean Speed of Fluid in Point 1 ($v_1$), the height or depth 1 ($h_1$), and the pressure in column 1 ($p_1$) represent the velocity, height, and pressure at point 1, respectively, and the mean Speed of Fluid in Point 2 ($v_2$), the height or depth 2 ($h_2$), and the pressure in column 2 ($p_2$) represent the velocity, height, and pressure at point 2, respectively. Therefore, we have:

$\displaystyle\frac{1}{2} \rho v_1 ^2+ \rho g h_1 + p_1 =\displaystyle\frac{1}{2} \rho v_2 ^2+ \rho g h_2 + p_2 $

ID:(4504, 0)



Bernoulli equation, variations

Equation

>Top, >Model


The variación de la Presión ($\Delta p$) can be calculated from the average speed ($\bar{v}$) and the speed difference between surfaces ($\Delta v$) with the density ($\rho$) using

$ \Delta p = - \rho \bar{v} \Delta v $

$\bar{v}$
Average speed
$m/s$
10298
$\rho$
Density
$kg/m^3$
5342
$\Delta v$
Speed difference between surfaces
$m/s$
5556
$\Delta p$
Variación de la Presión
$Pa$
6673

In the case where there is no hystrostatic pressure, Bernoulli's law for the density ($\rho$), the pressure in column 1 ($p_1$), the pressure in column 2 ($p_2$), the mean Speed of Fluid in Point 1 ($v_1$) and the mean Speed of Fluid in Point 2 ($v_2$)

$\displaystyle\frac{1}{2} \rho v_1 ^2 + p_1 =\displaystyle\frac{1}{2} \rho v_2 ^2 + p_2 $



can be rewritten with the variación de la Presión ($\Delta p$)

$ \Delta p = p_2 - p_1 $



and keeping in mind that

$v_2^2 - v_1^2 = \displaystyle\frac{1}{2}(v_2-v_1)(v_1+v_2)$



with

$ \bar{v} = \displaystyle\frac{ v_1 + v_2 }{2}$



and

$ \Delta v = v_2 - v_1 $



you have to

$ \Delta p = - \rho \bar{v} \Delta v $

which allows us to see the effect of the average speed of a body and the difference between its surfaces, as observed in an airplane or bird wing.

ID:(4835, 0)



Hagen-Poiseuille Law for Soil

Description

>Top


ID:(107, 0)



Flow after Hagen-Poiseuille equation

Concept

>Top


The profile of the speed on a cylinder radio ($v$) in the radius of position in a tube ($r$) allows us to calculate the volume flow ($J_V$) in a tube by integrating over the entire surface, which leads us to the well-known Hagen-Poiseuille law.



The result is an equation that depends on tube radius ($R$) raised to the fourth power. However, it is crucial to note that this flow profile only holds true in the case of laminar flow.

Thus, from the viscosity ($\eta$), it follows that the volume flow ($J_V$) before ($$) and ($$), the expression:

$ J_V =-\displaystyle\frac{ \pi R ^4}{8 \eta }\displaystyle\frac{ \Delta p }{ \Delta L }$

The original papers that gave rise to this law with a combined name were:

"Ueber die Gesetze, welche des der Strom des Wassers in röhrenförmigen Gefässen bestimmen" (On the laws governing the flow of water in cylindrical vessels), Gotthilf Hagen, Annalen der Physik und Chemie 46:423442 (1839).

"Recherches expérimentales sur le mouvement des liquides dans les tubes de très-petits diamètres" (Experimental research on the movement of liquids in tubes of very small diameters), Jean-Louis-Marie Poiseuille, Comptes Rendus de l'Académie des Sciences 9:433544 (1840).

ID:(2216, 0)



Speed profile of flow in a cylinder

Equation

>Top, >Model


When solving the flow equation with the boundary condition, we obtain the speed on a cylinder radio ($v$) as a function of the curvature radio ($r$), represented by a parabola centered at the maximum flow rate ($v_{max}$) and equal to zero at the tube radius ($R$):

$ v = v_{max} \left(1-\displaystyle\frac{ r ^2}{ R ^2}\right)$

$r$
Cylinder radial position
$m$
5420
$v_{max}$
Maximum flow rate
$m/s$
5421
$v$
Speed on a cylinder radio
$m/s$
5449
$R$
Tube radius
$m$
5417

When a the pressure difference ($\Delta p_s$) acts on a section with an area of $\pi R^2$, with the tube radius ($R$) as the curvature radio ($r$), it generates a force represented by:

$\pi r^2 \Delta p$



This force drives the liquid against viscous resistance, given by:

$ F_v =-2 \pi r \Delta L \eta \displaystyle\frac{ dv }{ dr }$



By equating these two forces, we obtain:

$\pi r^2 \Delta p = \eta 2\pi r \Delta L \displaystyle\frac{dv}{dr}$



Which leads to the equation:

$\displaystyle\frac{dv}{dr} = \displaystyle\frac{1}{2\eta}\displaystyle\frac{\Delta p}{\Delta L} r$



If we integrate this equation from a position defined by the curvature radio ($r$) to the edge where the tube radius ($R$) (taking into account that the velocity at the edge is zero), we can obtain the speed on a cylinder radio ($v$) as a function of the curvature radio ($r$):

$ v = v_{max} \left(1-\displaystyle\frac{ r ^2}{ R ^2}\right)$



Where:

$ v_{max} =-\displaystyle\frac{ R ^2}{4 \eta }\displaystyle\frac{ \Delta p }{ \Delta L }$



is the maximum flow rate ($v_{max}$) at the center of the flow.

.

ID:(3627, 0)



Maximal speed of flow in a cylinder

Equation

>Top, >Model


The value of the maximum flow rate ($v_{max}$) at the center of a cylinder depends on the viscosity ($\eta$), the tube radius ($R$), and the gradient created by the pressure difference ($\Delta p_s$) and the tube length ($\Delta L$), as represented by:

$ v_{max} =-\displaystyle\frac{ R ^2}{4 \eta }\displaystyle\frac{ \Delta p }{ \Delta L }$

$v_{max}$
Maximum flow rate
$m/s$
5421
$\Delta L$
Tube length
$m$
5430
$R$
Tube radius
$m$
5417
$\Delta p$
Variación de la Presión
$Pa$
6673
$\eta$
Viscosity
$Pa s$
5422

The negative sign indicates that the flow always occurs in the direction opposite to the gradient, meaning from the area of higher pressure to the area of lower pressure.

ID:(3628, 0)



Forces on Plates

Image

>Top


ID:(1639, 0)



Condición de erosión generalizada

Equation

>Top, >Model


La plaquita de arcilla sera arrastrada por la corriente en la medida que la fuerza hidrostática dp,S supere la fuerza gravitacional mg, donde S es la sección de la plaquita, m su masa, dp la diferencia de presión entre la parte interior y superior de esta y g la aceleración gravitacional.

Por ello la condición de ser arrastrada es:

$ dp S > m g $

$g$
Gravitational Acceleration
9.8
$m/s^2$
5310
$m_c$
Mass of a clay plate
$kg$
6278
$dp$
Pressure Difference Lifting the Clay Plate
$Pa$
6276
$s_c$
Section clay plate
$m^2$
6277

ID:(4506, 0)



Masa de Plaquita de Arcilla

Equation

>Top, >Model


La masa de la plaquita se puede calcular de la densidad solida del material y del volumen mediante\\n\\n

$m=\rho_sV$

\\n\\nEl volumen se calcula del cuadrado del lado l_c y la altura w_c de modo que\\n\\n

$V=w_cl_c^2$



Con ello la masa del la plaquita es:

$ m = \rho_s w_c l_c ^2$

$w_c$
Height of a clay plate
$m$
5989
$l_c$
Length and width of a clay plate
$m$
5991
$m_c$
Mass of a clay plate
$kg$
6278
$\rho_s$
Solid Density
$kg/m^3$
4944

ID:(4508, 0)



Sección de Plaquita de Arcilla

Equation

>Top, >Model


La sección S sobre la que actúa la presión sobre la plaquita se calcula del cuadrado del lado l_c de esta:

$ S = l_c ^ 2$

$l_c$
Length and width of a clay plate
$m$
5991
$s_c$
Section clay plate
$m^2$
6277

ID:(4507, 0)



Condición de erosión en función de geometría

Equation

>Top, >Model


La condición de estabilidad general

$ dp S > m g $



se puede reescribir con la masa

$ m = \rho_s w_c l_c ^2$



y la sección

$ S = l_c ^ 2$



como

$dp > \rho_s w_c g $

$g$
Gravitational Acceleration
9.8
$m/s^2$
5310
$w_c$
Height of a clay plate
$m$
5989
$dp$
Pressure Difference Lifting the Clay Plate
$Pa$
6276

ID:(10630, 0)