Viscosity

Storyboard

In the kinetic theory of gases, the behavior of the different molecules is modeled to understand the different properties of the system.

>Model

ID:(788, 0)



Concentration based on molar mass

Equation

>Top, >Model


If we divide the density ($\rho$) by the particle mass ($m$), we will obtain the particle concentration ($c_n$):

$ c_n =\displaystyle\frac{ \rho }{ m }$

$\rho$
Density
$kg/m^3$
5342
$c_n$
Particle concentration
$1/m^3$
5548
$m$
Particle mass
$kg$
5516

Given the particle concentration ($c_n$) with the number of particles ($N$) and the volume ($V$), we have:

$ c_n \equiv \displaystyle\frac{ N }{ V }$



With the particle mass ($m$) and the mass ($M$),

$ m \equiv \displaystyle\frac{ M }{ N }$



As the density ($\rho$) is

$ \rho \equiv\displaystyle\frac{ M }{ V }$



we obtain

$c_n=\displaystyle\frac{N}{V}=\displaystyle\frac{M}{mV}=\displaystyle\frac{\rho}{m}$



Therefore,

$ c_n =\displaystyle\frac{ \rho }{ m }$

ID:(10623, 0)



Energy as a function of degrees of freedom

Equation

>Top, >Model


The Stefan-Boltzmann law, initially proposed by Josef Stefan [1] and later refined by Ludwig Boltzmann [2], states that the energy of a molecule ($E$) is proportional to the degrees of freedom ($f$) multiplied by the absolute temperature ($T$) with a proportionality constant of the boltzmann Constant ($k_B$):

$ E =\displaystyle\frac{ f }{2} k_B T $

$T$
Absolute temperature
$K$
5177
$k_B$
Boltzmann Constant
$J/K$
5395
$f$
Degrees of freedom
$-$
4959
$E$
Energy of a molecule
$J$
6073



It is important to note that the absolute temperature ($T$) must be expressed in degrees Kelvin.

The number of degrees of freedom of a particle corresponds to the number of variables required to describe its thermodynamic state. For instance, a point particle requires only three coordinates, resulting in three degrees of freedom. If the particle has shape and rigidity, two additional angles are needed, leading to a total of five degrees of freedom. When the particle can deform or vibrate in one or more directions, these additional modes are also considered as additional degrees of freedom. However, it is important to note that these extra degrees of freedom exist only at high temperatures when the particle has enough energy to activate such vibrations.

[1] "Über die Beziehung zwischen der Wärmestrahlung und der Temperatur" (On the Relationship Between Heat Radiation and Temperature), Josef Stefan, Sitzungsberichte der mathematisch-naturwissenschaftlichen Classe der Kaiserlichen Akademie der Wissenschaften, Wien (1879).

[2] "Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen" (Further Studies on Thermal Equilibrium among Gas Molecules), Ludwig Boltzmann, Sitzungsberichte der mathematisch-naturwissenschaftlichen Classe der Kaiserlichen Akademie der Wissenschaften, Wien (1884).

ID:(4387, 0)



Energy of a Molecule

Description

>Top


ID:(1050, 0)



Free Path of a Molecule

Description

>Top


When a molecule moves periodically through the volume containing the gas, it will eventually encounter another molecule and they may collide. The distance it travels between two consecutive collisions is called the 'mean free path'.

ID:(114, 0)



Free path with mole concentration

Equation

>Top, >Model


Since the diameter of the particle $d$ is twice the radius $a$

$d=2a$



and the particle concentration $c_N$ can be expressed in terms of molar concentration $c_n$ as

$c_N=N_Ac_n$



where $N_A$ is Avogadro's number, the equation for mean free path

$l=\displaystyle\frac{1}{4a^2\pi c_N}$



can also be written as:

$l=\displaystyle\frac{1}{d^2\pi c N_A}$

$N_A$
Avogadro's Number
$-$
5403
$l$
Calculation of free path with diameter and molar concentration
$m$
6214
$c$
Molar concentration
$mol/m^3$
5083
$d$
Molecule diameter
$m$
6213
$\pi$
Pi
3.1415927
$rad$
5057

ID:(4477, 0)



Free path with particle concentration

Equation

>Top, >Model


The mean free path can be estimated in terms of the diameter of an imaginary cylinder surrounding a particle, on average having one collision with another particle.

The radius of the cylinder corresponds to the maximum distance two particles must have to collide, which is equal to twice the radius of the particle, i.e., the particle diameter ($d$). Since only one collision occurs within this cylinder, the number of particles contained within it must be equal to one. This means that:

$l d^2\pi c_n= 1$



with the particle concentration ($c_n$), and solving for the free path ($\bar{l}$), we obtain:

$ l =\displaystyle\frac{1}{ d ^2 \pi c_n }$

$l$
Free Path in Function of the Radio and Particle Concentration
$m$
6078
$c$
Molar concentration
$mol/m^3$
5083
$\pi$
Pi
3.1415927
$rad$
5057
$a$
Radio of the molecule
$m$
6077

This represents the mean free path.

ID:(4392, 0)



Kinetic energy of the particle

Equation

>Top, >Model


The kinetic energy ($K$) combined with the particle mass ($m$) and the average speed of a particle ($\bar{v}$) equals

$ K =\displaystyle\frac{ m }{2} \bar{v} ^2$

$v$
Average speed of a particle
$m/s$
6074
$K$
Kinetic energy
$J$
6075
$m$
Particle mass
$kg$
5516



Note: In strict rigor, kinetic energy depends on the average velocity squared $\bar{v^2}$. However, it is assumed to be approximately equal to the square of the average velocity:

$\bar{v^2}\sim\bar{v}^2$

ID:(4390, 0)



Mechanisms

Iframe

>Top



Code
Concept

Mechanisms

ID:(15296, 0)



Microscopic viscosity model

Equation

>Top, >Model


If the force F created by the mixture of particles at different times is considered

$F=-Slc_nm\displaystyle\frac{dv_x}{dt}$



where S is the section, l the free path, c_n the concentration, m the mass of the particles and dv_x the variation in time dt . This expression can be re-formulated if the acceleration is rewritten as

$F=-S,l,c_nm\displaystyle\frac{dv_x}{dz}\displaystyle\frac{dz}{dt}$



The derivative of the z position with respect to time can be modeled using

$\displaystyle\frac{dz}{dt}=v_z=\displaystyle\frac{1}{3}\sqrt{\langle v^2\rangle}$



In this way the force created by the mixture of moments like

$F=-\displaystyle\frac{1}{3}S,l,c_nm\sqrt{\langle v^2\rangle}\displaystyle\frac{dv_x}{dz}$



If you compare this expression with the viscous force

$F=-S,\eta\displaystyle\frac{dv_x}{dz}$



it is concluded that the viscosity has to be

$\eta=\displaystyle\frac{1}{3}lc_nm\sqrt{\langle v^2\rangle}$

where the negative sign is because the force is opposite to the direction of flow.

ID:(3945, 0)



Model

Top

>Top



Parameters

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$\bar{v}$
v
Average speed of a particle
m/s
$\langle v^2\rangle$
v^2
Average Squared of Speed
m^2/s^2
$N_A$
N_A
Avogadro's number
-
$N_A$
N_A
Avogadro's Number
-
$k_B$
k_B
Boltzmann Constant
J/K
$l$
l
Calculation of free path with diameter and molar concentration
m
$f$
f
Degrees of freedom
-
$\rho$
rho
Density
kg/m^3
$E$
E
Energy of a molecule
J
$\bar{l}$
l
Free path
m
$l_r$
l_r
Free Path in Function of the Radio and Particle Concentration
m
$M_m$
M_m
Molar Mass
kg/mol
$d$
d
Molecule diameter
m
$d$
d
Particle diameter
m
$m$
m
Particle mass
kg
$\pi$
pi
Pi
rad
$a$
a
Radio of the molecule
m
$\eta$
eta
Viscosity
Pa s

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$T$
T
Absolute temperature
K
$F$
F
Force
N
$dt$
dt
Infinitesimal Variation of Time
s
$K$
K
Kinetic energy
J
$c$
c
Molar concentration
mol/m^3
$c_m$
c_m
Molar concentration
mol/m^3
$c_n$
c_n
Particle concentration
1/m^3
$S$
S
Section
m^2
$\Delta v$
Dv
Speed difference between surfaces
m/s

Calculations


First, select the equation: to , then, select the variable: to

Calculations

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

Variable Given Calculate Target : Equation To be used




Equations

#
Equation

$ c_n = N_A c_m $

c_n = N_A * c_m


$ c_n =\displaystyle\frac{ \rho }{ m }$

c_n = rho / m


$ E =\displaystyle\frac{ f }{2} k_B T $

E = f * k_B * T /2


$ K =\displaystyle\frac{ m }{2} \bar{v} ^2$

K = m * v ^2/2


$ l =\displaystyle\frac{1}{ d ^2 \pi c_n }$

l = 1/( d ^2 * pi * c )


$ m =\displaystyle\frac{ M_m }{ N_A }$

m = M_m / N_A


$ \bar{v} =\sqrt{\displaystyle\frac{ f k_B T }{ m }}$

v =sqrt( f * k_B * T / m )


$F=-Slc_nm\displaystyle\frac{dv_x}{dt}$

F=-Slc_nm\displaystyle\frac{dv_x}{dt}


$l=\displaystyle\frac{1}{d^2\pi c N_A}$

l = 1 / ( d^2 * pi * c_n * N_A )


$\eta=\displaystyle\frac{1}{3}lc_nm\sqrt{\langle v^2\rangle}$

\eta=\displaystyle\frac{1}{3}lc_nm\sqrt{\langle v^2\rangle}


$\eta=\displaystyle\frac{1}{6\pi d^2}\sqrt{fmkT}$

\eta=\displaystyle\frac{1}{6\pi d^2}\sqrt{fmkT}

ID:(15354, 0)



Particle and mole concentration

Equation

>Top, >Model


To convert the molar concentration ($c_m$) to the particle concentration ($c_n$), simply multiply the former by the avogadro's number ($N_A$) as follows:

$ c_n = N_A c_m $

$N_A$
Avogadro's number
6.02e+23
$-$
9860
$c_m$
Molar concentration
$mol/m^3$
6609
$c_n$
Particle concentration
$1/m^3$
5548

ID:(10624, 0)



Speed of a Molecule

Description

>Top


En un gas la molecula se mueven por el espacio en gran medida en forma independiente del las restantes moleculas.

En primera aproximación se puede describir la interacción como meros choques.

En una segunda aproximación se puee tomar en cuenta eventuales fuerzas atractivas entre moleculas. Estas en particular se haran mas visibles en bordes del sistema por existir una asimetria de la distribución de particulas. En el medio del volumen la molecula estan expuesta a fuerzas de todos lados lo que en promedio tiende a anularse. En el borde solo existen vecinas hacia el inetrior del contenedor por lo que puede exitir una fuerza que frena a la particula que va a impactar la pared. Esto corresponde a la reducción de la presón que se modela con la ecuación de Van der Waals.

ID:(113, 0)



Viscosity as a function of temperature

Equation

>Top, >Model


If the viscosity is

$\eta=\displaystyle\frac{1}{3}lc_nm\sqrt{\langle v^2\rangle}$



with l the free path, c_n the concentration, m the mass and \ langle v ^ 2 \ rangle the expected value of the square of the velocity. With the expression for the free way

$l=\displaystyle\frac{1}{\sqrt{2}\pi d^2c_n}$



the viscosity as a function of the temperature will be:

$\eta=\displaystyle\frac{1}{6\pi d^2}\sqrt{fmkT}$

where the negative sign is because the force is opposite to the direction of flow.

ID:(3946, 0)



Viscosity as momentum exchange

Equation

>Top, >Model


If the speed at a point z is v_x (z) and at a neighboring point z + dz it is v_x (z + dz) it will be taken that the particles at a distance of a free path l can redistribute the moment:

$mdv_x = m(v_x(z + dz) - v_x(z))$



The number of particles participating in this process is equal to those found in a volume of section S and height equal to the free path l :

$S l c_n$



Therefore, the force F will be equal to the moment change in dp and the time dt

$F=\displaystyle\frac{dp}{dt}$



so the slimy force is

$F=-Slc_nm\displaystyle\frac{dv_x}{dt}$

where the negative sign is because the force is opposite to the direction of flow.

ID:(3944, 0)



Particle mass and molar mass

Equation

>Top, >Model


The particle mass ($m$) can be estimated from the molar Mass ($M_m$) and the avogadro's number ($N_A$) using

$ m =\displaystyle\frac{ M_m }{ N_A }$

$N_A$
Avogadro's number
6.02e+23
$-$
9860
$M_m$
Molar Mass
$kg/mol$
6212
$m$
Particle mass
$kg$
5516

ID:(4389, 0)



Average speed of particles

Equation

>Top, >Model


Como la energía cinética de la molécula es

$ K =\displaystyle\frac{ m }{2} \bar{v} ^2$



y la energía en función de la temperatura es

$ E =\displaystyle\frac{ f }{2} k_B T $



con k_B la constante de Boltzmann, f el número de grados de libertad y T la temperatura absoluta se tiene que

$ \bar{v} =\sqrt{\displaystyle\frac{ f k_B T }{ m }}$

$T$
Absolute temperature
$K$
5177
$v$
Average speed of a particle
$m/s$
6074
$k_B$
Boltzmann Constant
$J/K$
5395
$f$
Degrees of freedom
$-$
4959
$m$
Particle mass
$kg$
5516

ID:(4391, 0)