Thermodynamic Functions

Storyboard

>Model

ID:(172, 0)



Internal energy and partition function

Image

>Top


The internal energy is allowed to calculate from the partition function as the derivative with respect to \ beta :

ID:(11723, 0)



Internal Energy

Equation

>Top, >Model


If the absolute temperature ($T$) and the pressure ($p$) are held constant, the the variation of the Internal Energy ($dU$), which depends on the entropy variation ($dS$) and the volume Variation ($dV$),

$ dU = T dS - p dV $



can be integrated, resulting in the expression for the internal energy ($U$) in terms of the entropy ($S$) and the volume ($V$):

$ U = T S - p V $

$T$
Absolute temperature
$K$
$S$
Entropy
$J/K$
$U$
Internal energy
$J$
$p$
Pressure
$Pa$
$V$
Volume
$m^3$

ID:(3472, 0)



Internal Energy: Differential ratio

Equation

>Top, >Model


As the internal energy differential ($dU$) depends on the differential inexact Heat ($\delta Q$), the pressure ($p$), and the volume Variation ($dV$) according to the equation:

$ dU = \delta Q - p dV $



we can replace the differential inexact Heat ($\delta Q$) with the expression from the second law of thermodynamics in terms of the absolute temperature ($T$) and the entropy variation ($dS$), resulting in the expression for the internal energy differential ($dU$):

$ dU = T dS - p dV $

$T$
Absolute temperature
$K$
$dS$
Entropy variation
$J/K$
$p$
Pressure
$Pa$
$dU$
Variation of the Internal Energy
$J$
$dV$
Volume Variation
$m^3$

As the internal energy differential ($dU$) depends on the differential inexact Heat ($\delta Q$), the pressure ($p$), and the volume Variation ($dV$) according to the equation:

$ dU = \delta Q - p dV $



and the expression for the second law of thermodynamics with the absolute temperature ($T$) and the entropy variation ($dS$) as:

$ \delta Q = T dS $



we can conclude that:

$ dU = T dS - p dV $

ID:(3471, 0)



Differential of internal energy

Equation

>Top, >Model


Since the internal energy is a function of volume and entropy, we can calculate its differential in terms of the differentials of volume and entropy. Therefore, we have:

$ dU = DU_{S,V} dS + DU_{V,S} dV $

$dS$
Entropy variation
$J/K$
$dU$
Internal energy differential
$J$
$DU_{S,V}$
Partial derivative of internal energy with respect to entropy at constant volume
$K$
$DU_{V,s}$
Partial derivative of internal energy with respect to volume at constant entropy
$Pa$
$dV$
Volume Variation
$m^3$



where we have defined:

$ DU_{S,V} =\left(\displaystyle\frac{\partial U }{\partial S }\right)_ V $



and

$ DU_{V,S} =\left(\displaystyle\frac{\partial U }{\partial V }\right)_ S $

ID:(8185, 0)



Calculo de la derivada parcial de la energía interna en el volumen a entropía constante

Equation

>Top, >Model


La derivada de la energía interna en el volumen a entropia constante es

$ DU_{V,S} =\left(\displaystyle\frac{\partial U }{\partial V }\right)_ S $

$S$
Entropy
$J/K$
$U$
Internal energy
$J$
$DU_{V,s}$
Partial derivative of internal energy with respect to volume at constant entropy
$Pa$
$V$
Volume
$m^3$

ID:(12023, 0)



Calculo de la derivada parcial de la energía interna en la entropia a volumen constante

Equation

>Top, >Model


La derivada de la energía interna en la entropia a volumen constante es

$ DU_{S,V} =\left(\displaystyle\frac{\partial U }{\partial S }\right)_ V $

$S$
Entropy
$J/K$
$U$
Internal energy
$J$
$DU_{S,V}$
Partial derivative of internal energy with respect to entropy at constant volume
$K$
$V$
Volume
$m^3$

ID:(12024, 0)



Internal energy and equation of state at constant entropy

Equation

>Top, >Model


The internal energy differential ($dU$) is a function of the variations in the entropy ($S$) and the volume ($V$), as well as the slopes the partial derivative of internal energy with respect to volume at constant entropy ($DU_{V,S}$) and the partial derivative of internal energy with respect to entropy at constant volume ($DU_{S,V}$), which is expressed as:

$ dU = DU_{S,V} dS + DU_{V,S} dV $



Comparing this with the first law of thermodynamics, it turns out that the partial derivative of internal energy with respect to volume at constant entropy ($DU_{V,S}$) is equal to minus the pressure ($p$):

$ DU_{V,S} =- p $

$DU_{V,s}$
Partial derivative of internal energy with respect to volume at constant entropy
$Pa$
$p$
Pressure
$Pa$

ID:(3535, 0)



Internal energy and equation of state at constant volume

Equation

>Top, >Model


The internal energy differential ($dU$) is a function of the variations in the entropy ($S$) and the volume ($V$), as well as the slopes the partial derivative of internal energy with respect to volume at constant entropy ($DU_{V,S}$) and the partial derivative of internal energy with respect to entropy at constant volume ($DU_{S,V}$), which is expressed as:

$ dU = DU_{S,V} dS + DU_{V,S} dV $



Comparing this with the first law of thermodynamics, it turns out that the partial derivative of internal energy with respect to entropy at constant volume ($DU_{S,V}$) is equal to the absolute temperature ($T$):

$ DU_{S,V} = T $

$T$
Absolute temperature
$K$
$DU_{S,V}$
Partial derivative of internal energy with respect to entropy at constant volume
$K$

ID:(3546, 0)



Internal energy and partition function

Equation

>Top, >Model


La energía interna es igual a la energía media calculada con

$\bar{E}=-\displaystyle\frac{\partial\ln Z}{\partial\beta}$



se tiene que con la energía interna es

$U=-\displaystyle\frac{\partial\ln Z}{\partial\beta}$

ID:(3534, 0)



Internal energy and its relation of Maxwell

Equation

>Top, >Model


Since the internal energy ($U$) is an exact differential, it means that you can vary the entropy ($S$) first and then the volume ($V$), or in the reverse order, and the result will be the same. This can be expressed by taking derivatives of the slopes in different orders, and there will be no difference:

$D(DU_{S,V})_{V,S}=D(DU_{V,S})_{S,V}$



If you replace the differential with the corresponding variable, you obtain the relationship involving the absolute temperature ($T$) and the pressure ($p$):

$ DT_{V,S} =- Dp_{S,V} $

$Dp_{S,V}$
Partial derivative of pressure with respect to entropy at constant volume
$K/m^3$
$DT_{V,S}$
Partial derivative of temperature with respect to volume at constant entropy
$K/m^3$

Since the internal energy differential ($dU$) is an exact differential, we should note that the internal energy ($U$) with respect to the entropy ($S$) and the volume ($V$) must be independent of the order in which the function is derived:

$D(DU_{S,V}){V,S}=D(DU{V,S})_{S,V}$



Using the relationship between the slope the partial derivative of internal energy with respect to entropy at constant volume ($DU_{S,V}$) and the absolute temperature ($T$)

$ DU_{S,V} = T $

,

and the relationship between the slope the partial derivative of internal energy with respect to volume at constant entropy ($DU_{V,S}$) and the pressure ($p$)

$ DU_{V,S} =- p $

,

we can conclude that:

$ DT_{V,S} =- Dp_{S,V} $

ID:(3556, 0)



Calculo de la derivada parcial de la temperatura en el volumen a entropía constante

Equation

>Top, >Model


La derivada de la temperatura en el volumen a entropia constante es

$ DT_{V,S} =\left(\displaystyle\frac{\partial T }{\partial V }\right)_ S $

$T$
Absolute temperature
$K$
$S$
Entropy
$J/K$
$DT_{V,S}$
Partial derivative of temperature with respect to volume at constant entropy
$K/m^3$
$V$
Volume
$m^3$

ID:(12025, 0)



Calculo de la derivada parcial de la presión en la entropia a volumen constante

Equation

>Top, >Model


La derivada de la presión en la entropia a volumen constante es

$ Dp_{S,V} =\left(\displaystyle\frac{\partial p }{\partial S }\right)_ V $

$S$
Entropy
$J/K$
$Dp_{S,V}$
Partial derivative of pressure with respect to entropy at constant volume
$K/m^3$
$p$
Pressure
$Pa$
$V$
Volume
$m^3$

ID:(12026, 0)



0
Video

Video: Internal energy