Entalpía

Storyboard

Se obtienen mediante la función partición las distintas funciones y relaciones termodinámicas.

>Model

ID:(441, 0)



Enthalpy and partition function

Image

>Top


The enthalpy can be calculated from the partition function if it is remembered that this is equal to the internal energy and the pressure times the volume:

ID:(11724, 0)



Enthalpy

Equation

>Top, >Model


The enthalpy ($H$) is defined as the sum of the internal energy ($U$) and the formation energy. The latter corresponds to the work done in the formation, which is equal to $pV$ with the pressure ($p$) and the volume ($V$). Therefore, we have:

$ H = U + p V $

$H$
Enthalpy
$J$
5229
$U$
Internal energy
$J$
5228
$p$
Pressure
$Pa$
5224
$V$
Volume
$m^3$
5226

ID:(3536, 0)



Differential Enthalpy Relationship

Equation

>Top, >Model


The dependency of the differential enthalpy ($dH$) on the absolute temperature ($T$) and the entropy variation ($dS$), in addition to the volume ($V$) and the pressure Variation ($dp$), is given by:

$ dH = T dS + V dp $

$T$
Absolute temperature
$K$
5177
$dH$
Differential enthalpy
$J$
5171
$dS$
Entropy variation
$J/K$
5225
$dp$
Pressure Variation
$Pa$
5240
$V$
Volume
$m^3$
5226

If we differentiate the definition of the enthalpy ($H$), which depends on the internal energy ($U$), the pressure ($p$), and the volume ($V$), given by:

$ H = U + p V $



we obtain:

$dH = dU + Vdp + pdV$



using the differential enthalpy ($dH$), the internal energy differential ($dU$), the pressure Variation ($dp$), and the volume Variation ($dV$).

By differentiating the internal energy ($U$) with respect to the absolute temperature ($T$) and the entropy ($S$),

$ U = T S - p V $



we get:

$ dU = T dS - p dV $



with the internal energy differential ($dU$) and the entropy variation ($dS$).

Therefore, it finally results in:

$ dH = T dS + V dp $

ID:(3473, 0)



Calculo de la derivada parcial de la entalpia en la entropia a presión constante

Equation

>Top, >Model


La derivada de la entalpia en la entropia a presión constante es

$ DH_{S,p} =\left(\displaystyle\frac{\partial H }{\partial S }\right)_ p $

$H$
Enthalpy
$J$
5229
$S$
Entropy
$J/K$
5227
$DH_{S,p}$
Partial derivative of enthalpy with respect to entropy at constant pressure
$K$
8740
$p$
Pressure
$Pa$
5224

ID:(12028, 0)



Calculo de la derivada parcial de la entalpia en la presión a entropía constante

Equation

>Top, >Model


La derivada de la entalpia en la presión a entropia constante es

$ DH_{p,S} =\left(\displaystyle\frac{\partial H }{\partial p }\right)_ S $

$H$
Enthalpy
$J$
5229
$S$
Entropy
$J/K$
5227
$DH_{p,S}$
Partial derivative of enthalpy with respect to pressure at constant entropy
$m^3$
8741
$p$
Pressure
$Pa$
5224

ID:(12027, 0)



Enthalpy differential

Equation

>Top, >Model


The differential enthalpy ($dH$) is a function of the variations of the entropy variation ($dS$) and the pressure Variation ($dp$), as well as the slopes the partial derivative of enthalpy with respect to entropy at constant pressure ($DH_{S,p}$) and the partial derivative of enthalpy with respect to pressure at constant entropy ($DH_{p,S}$), expressed as:

$ dH = DH_{S,p} dS + DH_{p,S} dp $

$dH$
Differential enthalpy
$J$
5171
$dS$
Entropy variation
$J/K$
5225
$DH_{S,p}$
Partial derivative of enthalpy with respect to entropy at constant pressure
$K$
8740
$DH_{p,S}$
Partial derivative of enthalpy with respect to pressure at constant entropy
$m^3$
8741
$dp$
Pressure Variation
$Pa$
5240

Given that the enthalpy ($H$) depends on the entropy ($S$) and the pressure ($p$), the differential enthalpy ($dH$) can be calculated using:

$dH = \left(\displaystyle\frac{\partial H}{\partial S}\right)_p dS + \left(\displaystyle\frac{\partial H}{\partial p}\right)_S dp$



To simplify this expression, we introduce the notation for the derivative of the enthalpy ($H$) with respect to the entropy ($S$) while keeping the pressure ($p$) constant as:

$DH_{S,p} \equiv \left(\displaystyle\frac{\partial H}{\partial S}\right)_p$



and for the derivative of the enthalpy ($H$) with respect to the pressure ($p$) while keeping the entropy ($S$) constant as:

$DH_{p,S} \equiv \left(\displaystyle\frac{\partial H}{\partial p}\right)_S$



thus we can write:

$ dH = DH_{S,p} dS + DH_{p,S} dp $

ID:(8186, 0)



Enthalpy and equation of state at constant pressure

Equation

>Top, >Model


Comparing the differential enthalpy ($dH$) it turns out that the partial derivative of enthalpy with respect to entropy at constant pressure ($DH_{S,p}$) is equal to the absolute temperature ($T$):

$ DH_{S,p} = T $

$T$
Absolute temperature
$K$
5177
$DH_{S,p}$
Partial derivative of enthalpy with respect to entropy at constant pressure
$K$
8740

The differential enthalpy ($dH$) is a function of the variations of the entropy variation ($dS$) and the pressure Variation ($dp$), as well as the slopes the partial derivative of enthalpy with respect to entropy at constant pressure ($DH_{S,p}$) and the partial derivative of enthalpy with respect to pressure at constant entropy ($DH_{p,S}$), expressed as:

$ dH = DH_{S,p} dS + DH_{p,S} dp $



Comparing this with the equation for the differential enthalpy ($dH$):

$ dH = T dS + V dp $



we find that the slope of the partial derivative of enthalpy with respect to entropy at constant pressure ($DH_{S,p}$) with respect to the variation of the absolute temperature ($T$) is:

$ DH_{S,p} = T $

ID:(3548, 0)



Enthalpy and equation of state at constant entropy

Equation

>Top, >Model


Comparing the differential enthalpy ($dH$) it turns out that the partial derivative of enthalpy with respect to pressure at constant entropy ($DH_{p,S}$) is equal to the volume ($V$):

$ DH_{p,S} = V $

$DH_{p,S}$
Partial derivative of enthalpy with respect to pressure at constant entropy
$m^3$
8741
$V$
Volume
$m^3$
5226

The differential enthalpy ($dH$) is a function of the variations of the entropy variation ($dS$) and the pressure Variation ($dp$), as well as the slopes the partial derivative of enthalpy with respect to entropy at constant pressure ($DH_{S,p}$) and the partial derivative of enthalpy with respect to pressure at constant entropy ($DH_{p,S}$), which is expressed as:

$ dH = DH_{S,p} dS + DH_{p,S} dp $



When compared to the equation for the differential enthalpy ($dH$):

$ dH = T dS + V dp $



it follows that the slope of the partial derivative of enthalpy with respect to pressure at constant entropy ($DH_{p,S}$) with respect to the variation of the volume ($V$) is:

$ DH_{p,S} = V $

ID:(3538, 0)



Enthalpy and partition function

Equation

>Top, >Model


La entalpía se logra calcular de la función partición si se recuerda que esta es igual a la energía interna y a la presión por el volumen que con enthalpy $J$, internal energy $J$, pressure $Pa$ and volume $m^3$ es:

$ H = U + p V $



Como la energía interna es con igual a

$U=-\displaystyle\frac{\partial\ln Z}{\partial\beta}$



y con la presión es

$\bar{p}=\displaystyle\frac{1}{\beta}\displaystyle\frac{\partial\ln Z}{\partial V}$



se tiene que con es

$ H =-\displaystyle\frac{\partial \ln Z }{\partial \beta }+\displaystyle\frac{ V }{ \beta }\displaystyle\frac{\partial \ln Z }{\partial V }$

ID:(3537, 0)



Enthalpy and its relation of Maxwell

Equation

>Top, >Model


With the entropy ($S$), the volume ($V$), the absolute temperature ($T$) and the pressure ($p$) we obtain one of the so-called Maxwell relations:

$ DT_{p,S} = DV_{S,p} $

$DT_{p,S}$
Partial derivative of temperature with respect to pressure at constant entropy
$K/Pa$
8743
$DV_{S,p}$
Partial derivative of volume with respect to entropy at constant pressure
$K/Pa$
8742

Since the differential enthalpy ($dH$) is an exact differential, we should note that the enthalpy ($H$) with respect to the entropy ($S$) and the pressure ($p$) must be independent of the order in which the function is derived:

$D(DH_{S,p}){p,S}=D(DH{p,S})_{S,p}$



Using the relationship between the slope the partial derivative of enthalpy with respect to entropy at constant pressure ($DH_{S,p}$) and the absolute temperature ($T$)

$ DH_{S,p} = T $



and the relationship between the slope the partial derivative of enthalpy with respect to pressure at constant entropy ($DH_{p,S}$) and the volume ($V$)

$ DH_{p,S} = V $



we can conclude that:

$ DT_{p,S} = DV_{S,p} $

ID:(3555, 0)



Calculo de la derivada parcial de la temperatura en la presión a entropía constante

Equation

>Top, >Model


La derivada de la temperatura en la presión a entropia constante es

$ DT_{p,S} =\left(\displaystyle\frac{\partial T }{\partial p }\right)_ S $

$T$
Absolute temperature
$K$
5177
$S$
Entropy
$J/K$
5227
$DT_{p,S}$
Partial derivative of temperature with respect to pressure at constant entropy
$K/Pa$
8743
$p$
Pressure
$Pa$
5224

ID:(12030, 0)



Calculo de la derivada parcial del volumen en la entropia a presión constante

Equation

>Top, >Model


La derivada el volumen en la entropia a presión constante es

$ DV_{S,p} =\left(\displaystyle\frac{\partial V }{\partial S }\right)_ p $

$S$
Entropy
$J/K$
5227
$DV_{S,p}$
Partial derivative of volume with respect to entropy at constant pressure
$K/Pa$
8742
$p$
Pressure
$Pa$
5224
$V$
Volume
$m^3$
5226

ID:(12029, 0)



0
Video

Video: Enthalpy