Internal energy and partition function
Image
The internal energy is allowed to calculate from the partition function as the derivative with respect to
ID:(11723, 0)
Internal Energy
Equation
The internal energy ($U$) is with the absolute temperature ($T$), the pressure ($p$), the entropy ($S$) and the volume ($V$) equal to:
$ U = T S - p V $ |
If the absolute temperature ($T$) and the pressure ($p$) are kept constant, the variation of the internal energy ($dU$), which depends on the entropy variation ($dS$) and the volume Variation ($dV$), is expressed as:
$ dU = T dS - p dV $ |
Integrating this results in the following expression in terms of the internal energy ($U$), the entropy ($S$), and the volume ($V$):
$ U = T S - p V $ |
ID:(3472, 0)
Internal Energy: differential ratio
Equation
The dependency of the internal energy differential ($dU$) on the pressure ($p$) and the volume Variation ($dV$), in addition to the absolute temperature ($T$) and the entropy variation ($dS$), is given by:
$ dU = T dS - p dV $ |
As the internal energy differential ($dU$) depends on the differential inexact Heat ($\delta Q$), the pressure ($p$), and the volume Variation ($dV$) according to the equation:
$ dU = \delta Q - p dV $ |
and the expression for the second law of thermodynamics with the absolute temperature ($T$) and the entropy variation ($dS$) as:
$ \delta Q = T dS $ |
we can conclude that:
$ dU = T dS - p dV $ |
.
ID:(3471, 0)
Differential of Internal Energy
Equation
Given that the internal energy ($U$) is a function of the entropy ($S$) and the volume ($V$), the internal energy differential ($dU$) can be expressed as follows:
$ dU = DU_{S,V} dS + DU_{V,S} dV $ |
Given that the internal energy ($U$) depends on the entropy ($S$) and the volume ($V$), the internal energy differential ($dU$) can be calculated as follows:
$dU = \left(\displaystyle\frac{\partial U}{\partial S}\right)_V dS + \left(\displaystyle\frac{\partial U}{\partial V}\right)_S dV$
To simplify the notation of this expression, we introduce the derivative of the internal energy ($U$) with respect to the entropy ($S$) while keeping the volume ($V$) constant as:
$DU_{S,V} \equiv \left(\displaystyle\frac{\partial U}{\partial S}\right)_V$
and the derivative of the internal energy ($U$) with respect to the volume ($V$) while keeping the entropy ($S$) constant as:
$DU_{V,S} \equiv \left(\displaystyle\frac{\partial U}{\partial V}\right)_S$
therefore, we can write:
$ dU = DU_{S,V} dS + DU_{V,S} dV $ |
ID:(8185, 0)
Calculo de la derivada parcial de la energía interna en el volumen a entropía constante
Equation
La derivada de la energía interna en el volumen a entropia constante es
$ DU_{V,S} =\left(\displaystyle\frac{\partial U }{\partial V }\right)_ S $ |
ID:(12023, 0)
Calculo de la derivada parcial de la energía interna en la entropia a volumen constante
Equation
La derivada de la energía interna en la entropia a volumen constante es
$ DU_{S,V} =\left(\displaystyle\frac{\partial U }{\partial S }\right)_ V $ |
ID:(12024, 0)
Internal energy and equation of state at constant entropy
Equation
Comparing this with the first law of thermodynamics, it turns out that the partial derivative of internal energy with respect to volume at constant entropy ($DU_{V,S}$) is equal to minus the pressure ($p$):
$ DU_{V,S} =- p $ |
The internal energy differential ($dU$) is a function of the variations in the entropy ($S$) and the volume ($V$), as well as the slopes the partial derivative of internal energy with respect to volume at constant entropy ($DU_{V,S}$) and the partial derivative of internal energy with respect to entropy at constant volume ($DU_{S,V}$), which is expressed as:
$ dU = DU_{S,V} dS + DU_{V,S} dV $ |
When compared with the equation for the internal energy differential ($dU$):
$ dU = T dS - p dV $ |
it results in the slope of the internal energy ($U$) with respect to the variation in the volume ($V$):
$ DU_{V,S} =- p $ |
ID:(3535, 0)
Internal energy and equation of state at constant volume
Equation
Comparing this with the first law of thermodynamics, it turns out that the partial derivative of internal energy with respect to entropy at constant volume ($DU_{S,V}$) is equal to the absolute temperature ($T$):
$ DU_{S,V} = T $ |
The internal energy differential ($dU$) is a function of the variations in the entropy ($S$) and the volume ($V$), as well as the slopes the partial derivative of internal energy with respect to volume at constant entropy ($DU_{V,S}$) and the partial derivative of internal energy with respect to entropy at constant volume ($DU_{S,V}$), which is expressed as:
$ dU = DU_{S,V} dS + DU_{V,S} dV $ |
When compared with the equation for the internal energy differential ($dU$):
$ dU = T dS - p dV $ |
it results in the slope of the internal energy ($U$) with respect to the variation in the entropy ($S$):
$ DU_{S,V} = T $ |
ID:(3546, 0)
Internal energy and partition function
Equation
La energía interna es igual a la energía media calculada con
$\bar{E}=-\displaystyle\frac{\partial\ln Z}{\partial\beta}$ |
se tiene que con la energía interna es
$U=-\displaystyle\frac{\partial\ln Z}{\partial\beta}$ |
ID:(3534, 0)
Internal energy and its relation of Maxwell
Equation
With the entropy ($S$), the volume ($V$), the absolute temperature ($T$) and the pressure ($p$) we obtain one of the so-called Maxwell relations:
$ DT_{V,S} =- Dp_{S,V} $ |
Since the internal energy differential ($dU$) is an exact differential, we should note that the internal energy ($U$) with respect to the entropy ($S$) and the volume ($V$) must be independent of the order in which the function is derived:
$D(DU_{S,V}){V,S}=D(DU{V,S})_{S,V}$
Using the relationship between the slope the partial derivative of internal energy with respect to entropy at constant volume ($DU_{S,V}$) and the absolute temperature ($T$)
$ DU_{S,V} = T $ |
,
and the relationship between the slope the partial derivative of internal energy with respect to volume at constant entropy ($DU_{V,S}$) and the pressure ($p$)
$ DU_{V,S} =- p $ |
,
we can conclude that:
$ DT_{V,S} =- Dp_{S,V} $ |
ID:(3556, 0)
Calculo de la derivada parcial de la temperatura en el volumen a entropía constante
Equation
La derivada de la temperatura en el volumen a entropia constante es
$ DT_{V,S} =\left(\displaystyle\frac{\partial T }{\partial V }\right)_ S $ |
ID:(12025, 0)
Calculo de la derivada parcial de la presión en la entropia a volumen constante
Equation
La derivada de la presión en la entropia a volumen constante es
$ Dp_{S,V} =\left(\displaystyle\frac{\partial p }{\partial S }\right)_ V $ |
ID:(12026, 0)
0
Video
Video: Internal energy