Energía Líbre
Storyboard
Se obtienen mediante la función partición las distintas funciones y relaciones termodinámicas.
ID:(442, 0)
Helmholtz free energy with partition function
Image
As the derivative with respect to the volume of the free energy of Helmholtz at constant temperature is:
ID:(11725, 0)
Differential relation Helmholtz Free Energy
Equation
The dependency of the differential Helmholtz Free Energy ($dF$) on the entropy ($S$) and the temperature variation ($dT$), in addition to the pressure ($p$) and the volume Variation ($dV$), is given by:
$ dF =- S dT - p dV $ |
The helmholtz free fnergy ($F$) is defined using the internal energy ($U$), the absolute temperature ($T$), and the entropy ($S$) as:
$ F = U - T S $ |
When we differentiate this equation, we obtain with the differential Helmholtz Free Energy ($dF$), the variation of the internal energy ($dU$), the entropy variation ($dS$), and the temperature variation ($dT$):
$dF = dU - TdS - SdT$
With the differential of internal energy and the variables the pressure ($p$) and the volume Variation ($dV$),
$ dU = T dS - p dV $ |
we finally obtain:
$ dF =- S dT - p dV $ |
ID:(3474, 0)
Differential of Helmholtz Free Energy
Equation
The differential Helmholtz Free Energy ($dF$) is a function of the variations of the absolute temperature ($T$) and the volume ($V$), as well as the slopes the partial derivative of the Helmholtz free energy with respect to temperature at constant volume ($DF_{T,V}$) and the partial derivative of the Helmholtz free energy with respect to volume at constant temperature ($DF_{V,T}$), which is expressed as:
$ dF = DF_{T,V} dT + DF_{V,T} dV $ |
Given that the helmholtz free fnergy ($F$) depends on the absolute temperature ($T$) and the volume ($V$), the differential Helmholtz Free Energy ($dF$) can be calculated using:
$dF = \left(\displaystyle\frac{\partial F}{\partial T}\right)_V dT + \left(\displaystyle\frac{\partial F}{\partial V}\right)_T dV$
To simplify this expression, we introduce the notation for the derivative of the helmholtz free fnergy ($F$) with respect to the absolute temperature ($T$) while keeping the volume ($V$) constant as:
$DF_{T,V} \equiv \left(\displaystyle\frac{\partial F}{\partial T}\right)_V$
and for the derivative of the helmholtz free fnergy ($F$) with respect to the volume ($V$) while keeping the absolute temperature ($T$) constant as:
$DF_{V,T} \equiv \left(\displaystyle\frac{\partial F}{\partial V}\right)_T$
thus we can write:
$ dF = DF_{T,V} dT + DF_{V,T} dV $ |
ID:(8187, 0)
Calculo de la derivada parcial de la energía libre de Helmholtz en el volumen a temperatura constante
Equation
La derivada de la energía interna en el volumen a entropia constante es
$ DF_{V,T} =\left(\displaystyle\frac{\partial F }{\partial V }\right)_ T $ |
ID:(12416, 0)
Calculo de la derivada parcial de la energía libre de Helmholtz en la temperatura a volumen constante
Equation
La derivada de la energía interna en el volumen a entropia constante es
$ DF_{T,V} =\left(\displaystyle\frac{\partial F }{\partial T }\right)_ V $ |
ID:(12417, 0)
Helmholtz Free Energy and Equation of State at Constant Volume
Equation
Comparing this with the first law of thermodynamics, it turns out that the partial derivative of the Helmholtz free energy with respect to temperature at constant volume ($DF_{T,V}$) is equal to minus the entropy ($S$):
$ DF_{T,V} =- S $ |
The differential Helmholtz Free Energy ($dF$) is a function of the variations of the absolute temperature ($T$) and the volume ($V$), as well as the slopes the partial derivative of the Helmholtz free energy with respect to temperature at constant volume ($DF_{T,V}$) and the partial derivative of the Helmholtz free energy with respect to volume at constant temperature ($DF_{V,T}$), expressed as:
$ dF = DF_{T,V} dT + DF_{V,T} dV $ |
Comparing this with the equation for the differential Helmholtz Free Energy ($dF$):
$ dF =- S dT - p dV $ |
and with the first law of thermodynamics, it follows that the partial derivative of the Helmholtz free energy with respect to temperature at constant volume ($DF_{T,V}$) is equal to negative the entropy ($S$):
$ DF_{T,V} =- S $ |
ID:(3550, 0)
Helmholtz Free Energy and Equation of State at Constant Temperature
Equation
Comparing this with the first law of thermodynamics, it turns out that the partial derivative of the Helmholtz free energy with respect to volume at constant temperature ($DF_{V,T}$) is equal to minus the pressure ($p$):
$ DF_{V,T} =- p $ |
The differential Helmholtz Free Energy ($dF$) is a function of the variations of the absolute temperature ($T$) and the volume ($V$), as well as the slopes the partial derivative of the Helmholtz free energy with respect to temperature at constant volume ($DF_{T,V}$) and the partial derivative of the Helmholtz free energy with respect to volume at constant temperature ($DF_{V,T}$), which is expressed as:
$ dF = DF_{T,V} dT + DF_{V,T} dV $ |
Comparing this with the equation for the differential Helmholtz Free Energy ($dF$):
$ dF =- S dT - p dV $ |
and with the first law of thermodynamics, it follows that the partial derivative of the Helmholtz free energy with respect to volume at constant temperature ($DF_{V,T}$) is equal to negative the pressure ($p$):
$ DF_{V,T} =- p $ |
ID:(3551, 0)
Helmholtz free energy with partition function
Equation
Como la derivada respecto del volumen de la energía libre de Helmholtz a temperatura constante es con partial derivative of the Helmholtz free energy with respect to volume at constant temperature $J/m^3$ and pressure $Pa$
$ DF_{V,T} =- p $ |
y la presión es con igual a
$\bar{p}=\displaystyle\frac{1}{\beta}\displaystyle\frac{\partial\ln Z}{\partial V}$ |
se tiene que la energía libre de Helmholtz es con
$ F =-\displaystyle\frac{1}{ \beta }\ln Z $ |
ID:(3540, 0)
Helmholtz Free Energy and its Relation of Maxwell
Equation
With the entropy ($S$), the volume ($V$), the absolute temperature ($T$) and the pressure ($p$) we obtain one of the so-called Maxwell relations:
$ DS_{V,T} = Dp_{T,V} $ |
Since the differential Helmholtz Free Energy ($dF$) is an exact differential, we should note that the helmholtz free fnergy ($F$) with respect to the absolute temperature ($T$) and the volume ($V$) must be independent of the order in which the function is derived:
$D(DF_{T,V})_{V,T}=D(DF{V,T})_{T,V}$
Using the relationship between the slope the partial derivative of the Helmholtz free energy with respect to temperature at constant volume ($DF_{T,V}$) and the entropy ($S$)
$ DF_{T,V} =- S $ |
and the relationship between the slope the partial derivative of the Helmholtz free energy with respect to volume at constant temperature ($DF_{V,T}$) and the pressure ($p$)
$ DF_{V,T} =- p $ |
we can conclude that:
$ DS_{V,T} = Dp_{T,V} $ |
ID:(3554, 0)
Calculo de la derivada parcial de la entropía en el volumen a temperatura constante
Equation
La derivada de la entropía en el volumen a temperatura constante es
$ DS_{V,T} =\left(\displaystyle\frac{\partial S }{\partial V }\right)_ T $ |
ID:(12422, 0)
Calculo de la derivada parcial de la presión en la temperatura a volumen constante
Equation
La derivada de la presión en la temperatura a volumen constante es
$ Dp_{T,V} =\left(\displaystyle\frac{\partial p }{\partial T }\right)_ V $ |
ID:(12420, 0)
0
Video
Video: Helmholtz Free Energy