Energía Líbre

Storyboard

Se obtienen mediante la función partición las distintas funciones y relaciones termodinámicas.

>Model

ID:(442, 0)



Helmholtz free energy with partition function

Image

>Top


As the derivative with respect to the volume of the free energy of Helmholtz at constant temperature is:

ID:(11725, 0)



Differential relation Helmholtz Free Energy

Equation

>Top, >Model


The dependency of the differential Helmholtz Free Energy ($dF$) on the entropy ($S$) and the temperature variation ($dT$), in addition to the pressure ($p$) and the volume Variation ($dV$), is given by:

$ dF =- S dT - p dV $

$dF$
Differential Helmholtz Free Energy
$J$
5251
$S$
Entropy
$J/K$
5227
$p$
Pressure
$Pa$
5224
$dT$
Temperature variation
$K$
5217
$dV$
Volume Variation
$m^3$
5223

The helmholtz free fnergy ($F$) is defined using the internal energy ($U$), the absolute temperature ($T$), and the entropy ($S$) as:

$ F = U - T S $



When we differentiate this equation, we obtain with the differential Helmholtz Free Energy ($dF$), the variation of the internal energy ($dU$), the entropy variation ($dS$), and the temperature variation ($dT$):

$dF = dU - TdS - SdT$



With the differential of internal energy and the variables the pressure ($p$) and the volume Variation ($dV$),

$ dU = T dS - p dV $



we finally obtain:

$ dF =- S dT - p dV $

ID:(3474, 0)



Differential of Helmholtz Free Energy

Equation

>Top, >Model


The differential Helmholtz Free Energy ($dF$) is a function of the variations of the absolute temperature ($T$) and the volume ($V$), as well as the slopes the partial derivative of the Helmholtz free energy with respect to temperature at constant volume ($DF_{T,V}$) and the partial derivative of the Helmholtz free energy with respect to volume at constant temperature ($DF_{V,T}$), which is expressed as:

$ dF = DF_{T,V} dT + DF_{V,T} dV $

$dF$
Differential Helmholtz Free Energy
$J$
5251
$DF_{T,V}$
Partial derivative of the Helmholtz free energy with respect to temperature at constant volume
$J/K$
9321
$DF_{V,T}$
Partial derivative of the Helmholtz free energy with respect to volume at constant temperature
$J/m^3$
9320
$dT$
Temperature variation
$K$
5217
$dV$
Volume Variation
$m^3$
5223

Given that the helmholtz free fnergy ($F$) depends on the absolute temperature ($T$) and the volume ($V$), the differential Helmholtz Free Energy ($dF$) can be calculated using:

$dF = \left(\displaystyle\frac{\partial F}{\partial T}\right)_V dT + \left(\displaystyle\frac{\partial F}{\partial V}\right)_T dV$



To simplify this expression, we introduce the notation for the derivative of the helmholtz free fnergy ($F$) with respect to the absolute temperature ($T$) while keeping the volume ($V$) constant as:

$DF_{T,V} \equiv \left(\displaystyle\frac{\partial F}{\partial T}\right)_V$



and for the derivative of the helmholtz free fnergy ($F$) with respect to the volume ($V$) while keeping the absolute temperature ($T$) constant as:

$DF_{V,T} \equiv \left(\displaystyle\frac{\partial F}{\partial V}\right)_T$



thus we can write:

$ dF = DF_{T,V} dT + DF_{V,T} dV $

ID:(8187, 0)



Calculo de la derivada parcial de la energía libre de Helmholtz en el volumen a temperatura constante

Equation

>Top, >Model


La derivada de la energía interna en el volumen a entropia constante es

$ DF_{V,T} =\left(\displaystyle\frac{\partial F }{\partial V }\right)_ T $

$T$
Absolute temperature
$K$
5177
$F$
Helmholtz free fnergy
$J$
5230
$DF_{V,T}$
Partial derivative of the Helmholtz free energy with respect to volume at constant temperature
$J/m^3$
9320
$V$
Volume
$m^3$
5226

ID:(12416, 0)



Calculo de la derivada parcial de la energía libre de Helmholtz en la temperatura a volumen constante

Equation

>Top, >Model


La derivada de la energía interna en el volumen a entropia constante es

$ DF_{T,V} =\left(\displaystyle\frac{\partial F }{\partial T }\right)_ V $

$T$
Absolute temperature
$K$
5177
$F$
Helmholtz free fnergy
$J$
5230
$DF_{T,V}$
Partial derivative of the Helmholtz free energy with respect to temperature at constant volume
$J/K$
9321
$V$
Volume
$m^3$
5226

ID:(12417, 0)



Helmholtz Free Energy and Equation of State at Constant Volume

Equation

>Top, >Model


Comparing this with the first law of thermodynamics, it turns out that the partial derivative of the Helmholtz free energy with respect to temperature at constant volume ($DF_{T,V}$) is equal to minus the entropy ($S$):

$ DF_{T,V} =- S $

$S$
Entropy
$J/K$
5227
$DF_{T,V}$
Partial derivative of the Helmholtz free energy with respect to temperature at constant volume
$J/K$
9321

The differential Helmholtz Free Energy ($dF$) is a function of the variations of the absolute temperature ($T$) and the volume ($V$), as well as the slopes the partial derivative of the Helmholtz free energy with respect to temperature at constant volume ($DF_{T,V}$) and the partial derivative of the Helmholtz free energy with respect to volume at constant temperature ($DF_{V,T}$), expressed as:

$ dF = DF_{T,V} dT + DF_{V,T} dV $



Comparing this with the equation for the differential Helmholtz Free Energy ($dF$):

$ dF =- S dT - p dV $



and with the first law of thermodynamics, it follows that the partial derivative of the Helmholtz free energy with respect to temperature at constant volume ($DF_{T,V}$) is equal to negative the entropy ($S$):

$ DF_{T,V} =- S $

ID:(3550, 0)



Helmholtz Free Energy and Equation of State at Constant Temperature

Equation

>Top, >Model


Comparing this with the first law of thermodynamics, it turns out that the partial derivative of the Helmholtz free energy with respect to volume at constant temperature ($DF_{V,T}$) is equal to minus the pressure ($p$):

$ DF_{V,T} =- p $

$DF_{V,T}$
Partial derivative of the Helmholtz free energy with respect to volume at constant temperature
$J/m^3$
9320
$p$
Pressure
$Pa$
5224

The differential Helmholtz Free Energy ($dF$) is a function of the variations of the absolute temperature ($T$) and the volume ($V$), as well as the slopes the partial derivative of the Helmholtz free energy with respect to temperature at constant volume ($DF_{T,V}$) and the partial derivative of the Helmholtz free energy with respect to volume at constant temperature ($DF_{V,T}$), which is expressed as:

$ dF = DF_{T,V} dT + DF_{V,T} dV $



Comparing this with the equation for the differential Helmholtz Free Energy ($dF$):

$ dF =- S dT - p dV $



and with the first law of thermodynamics, it follows that the partial derivative of the Helmholtz free energy with respect to volume at constant temperature ($DF_{V,T}$) is equal to negative the pressure ($p$):

$ DF_{V,T} =- p $

ID:(3551, 0)



Helmholtz free energy with partition function

Equation

>Top, >Model


Como la derivada respecto del volumen de la energía libre de Helmholtz a temperatura constante es con partial derivative of the Helmholtz free energy with respect to volume at constant temperature $J/m^3$ and pressure $Pa$

$ DF_{V,T} =- p $



y la presión es con igual a

$\bar{p}=\displaystyle\frac{1}{\beta}\displaystyle\frac{\partial\ln Z}{\partial V}$



se tiene que la energía libre de Helmholtz es con

$ F =-\displaystyle\frac{1}{ \beta }\ln Z $

ID:(3540, 0)



Helmholtz Free Energy and its Relation of Maxwell

Equation

>Top, >Model


With the entropy ($S$), the volume ($V$), the absolute temperature ($T$) and the pressure ($p$) we obtain one of the so-called Maxwell relations:

$ DS_{V,T} = Dp_{T,V} $

$DS_{V,T}$
Partial derivative of entropy with respect to volume at constant temperature
$J/m^3$
9324
$Dp_{T,V}$
Partial derivative of pressure with respect to temperature at constant volume
$Pa/K$
9325

Since the differential Helmholtz Free Energy ($dF$) is an exact differential, we should note that the helmholtz free fnergy ($F$) with respect to the absolute temperature ($T$) and the volume ($V$) must be independent of the order in which the function is derived:

$D(DF_{T,V})_{V,T}=D(DF{V,T})_{T,V}$



Using the relationship between the slope the partial derivative of the Helmholtz free energy with respect to temperature at constant volume ($DF_{T,V}$) and the entropy ($S$)

$ DF_{T,V} =- S $



and the relationship between the slope the partial derivative of the Helmholtz free energy with respect to volume at constant temperature ($DF_{V,T}$) and the pressure ($p$)

$ DF_{V,T} =- p $



we can conclude that:

$ DS_{V,T} = Dp_{T,V} $

ID:(3554, 0)



Calculo de la derivada parcial de la entropía en el volumen a temperatura constante

Equation

>Top, >Model


La derivada de la entropía en el volumen a temperatura constante es

$ DS_{V,T} =\left(\displaystyle\frac{\partial S }{\partial V }\right)_ T $

$T$
Absolute temperature
$K$
5177
$S$
Entropy
$J/K$
5227
$DS_{V,T}$
Partial derivative of entropy with respect to volume at constant temperature
$J/m^3$
9324
$V$
Volume
$m^3$
5226

ID:(12422, 0)



Calculo de la derivada parcial de la presión en la temperatura a volumen constante

Equation

>Top, >Model


La derivada de la presión en la temperatura a volumen constante es

$ Dp_{T,V} =\left(\displaystyle\frac{\partial p }{\partial T }\right)_ V $

$T$
Absolute temperature
$K$
5177
$Dp_{T,V}$
Partial derivative of pressure with respect to temperature at constant volume
$Pa/K$
9325
$p$
Pressure
$Pa$
5224
$V$
Volume
$m^3$
5226

ID:(12420, 0)



0
Video

Video: Helmholtz Free Energy