Energía Libre de Gibbs

Storyboard

Se obtienen mediante la función partición las distintas funciones y relaciones termodinámicas.

>Model

ID:(443, 0)



Gibbs free energy with partition function

Image

>Top


To calculate the Gibbs function of the partition function, it is enough to see how the enthalpy and the entropy of it are constructed. How do you have to

ID:(11726, 0)



Gibbs and Helmholtz free energy

Equation

>Top, >Model


The gibbs free energy ($G$) [1,2] represents the total energy, encompassing both the internal energy and the formation energy of the system. It is defined as the enthalpy ($H$), excluding the portion that cannot be used to perform work, which is represented by $TS$ with the absolute temperature ($T$) and the entropy ($S$). This relationship is expressed as follows:

$ G = H - T S $

$T$
Absolute temperature
$K$
5177
$H$
Enthalpy
$J$
5229
$S$
Entropy
$J/K$
5227
$G$
Gibbs free energy
$J$
5231

ID:(3542, 0)



Gibbs free energy as differential

Equation

>Top, >Model


The dependency of the variation of Gibbs Free Energy ($dG$) on the entropy ($S$) and the temperature variation ($dT$), in addition to the volume ($V$) and the pressure Variation ($dp$), is given by:

$ dG =- S dT + V dp $

$S$
Entropy
$J/K$
5227
$dp$
Pressure Variation
$Pa$
5240
$dT$
Temperature variation
$K$
5217
$dG$
Variation of Gibbs Free Energy
$J$
5402
$V$
Volume
$m^3$
5226

The gibbs free energy ($G$) as a function of the enthalpy ($H$), the entropy ($S$), and the absolute temperature ($T$) is expressed as:

$ G = H - T S $



The value of the differential of the Gibbs free energy ($dG$) is determined using the differential enthalpy ($dH$), the temperature variation ($dT$), and the entropy variation ($dS$) through the equation:

$dG=dH-SdT-TdS$



Since the differential enthalpy ($dH$) is related to the volume ($V$) and the pressure Variation ($dp$) as follows:

$ dH = T dS + V dp $



It follows that the differential enthalpy ($dH$), the entropy variation ($dS$), and the pressure Variation ($dp$) are interconnected in the following manner:

$ dG =- S dT + V dp $

ID:(3541, 0)



Gibbs Free Energy Differential

Equation

>Top, >Model


The differential of the Gibbs free energy ($dG$) is a function of the variations of the absolute temperature ($T$) and the pressure ($p$), as well as the slopes the partial derivative of the Gibbs free energy with respect to temperature at constant pressure ($DG_{T,p}$) and the partial derivative of the Gibbs free energy with respect to pressure at constant temperature ($DG_{p,T}$), which is expressed as:

$ dG = DG_{T,p} dT + DG_{p,T} dp $

$dG$
Differential of the Gibbs free energy
$J$
5252
$DG_{p,T}$
Partial derivative of the Gibbs free energy with respect to pressure at constant temperature
$m^3$
9323
$DG_{T,p}$
Partial derivative of the Gibbs free energy with respect to temperature at constant pressure
$J/K$
9322
$dp$
Pressure Variation
$Pa$
5240
$dT$
Temperature variation
$K$
5217

Given that the gibbs free energy ($G$) depends on the absolute temperature ($T$) and the pressure ($p$), the variation of Gibbs Free Energy ($dG$) can be calculated using:

$dG = \left(\displaystyle\frac{\partial G}{\partial T}\right)_p dT + \left(\displaystyle\frac{\partial G}{\partial p}\right)_T dp$



To simplify this expression, we introduce the notation for the derivative of the gibbs free energy ($G$) with respect to the absolute temperature ($T$) while keeping the pressure ($p$) constant as:

$DG_{T,p} \equiv \left(\displaystyle\frac{\partial G}{\partial T}\right)_p$



and for the derivative of the gibbs free energy ($G$) with respect to the pressure ($p$) while keeping the absolute temperature ($T$) constant as:

$DG_{p,T} \equiv \left(\displaystyle\frac{\partial G}{\partial p}\right)_T$



thus we can write:

$ dG = DG_{T,p} dT + DG_{p,T} dp $

ID:(8188, 0)



Calculo de la derivada parcial de la energía libre de Gibbs en la temperatura a presión constante

Equation

>Top, >Model


La derivada de la energía interna en el volumen a entropia constante es

$ DG_{T,p} =\left(\displaystyle\frac{\partial G }{\partial T }\right)_ p $

$T$
Absolute temperature
$K$
5177
$G$
Gibbs free energy
$J$
5231
$DG_{T,p}$
Partial derivative of the Gibbs free energy with respect to temperature at constant pressure
$J/K$
9322
$p$
Pressure
$Pa$
5224

ID:(12418, 0)



Calculo de la derivada parcial de la energía libre de Gibbs en la presión a temperatura constante

Equation

>Top, >Model


La derivada de la energía interna en el volumen a entropia constante es

$ DG_{p,T} =\left(\displaystyle\frac{\partial G }{\partial p }\right)_ T $

$T$
Absolute temperature
$K$
5177
$G$
Gibbs free energy
$J$
5231
$DG_{p,T}$
Partial derivative of the Gibbs free energy with respect to pressure at constant temperature
$m^3$
9323
$p$
Pressure
$Pa$
5224

ID:(12419, 0)



Gibbs free energy and equation of state at constant pressure

Equation

>Top, >Model


Comparing this with the first law of thermodynamics, it turns out that the partial derivative of the Gibbs free energy with respect to temperature at constant pressure ($DG_{T,p}$) is equal to minus the entropy ($S$):

$ DG_{T,p} =- S $

$S$
Entropy
$J/K$
5227
$DG_{T,p}$
Partial derivative of the Gibbs free energy with respect to temperature at constant pressure
$J/K$
9322

The differential of the Gibbs free energy ($dG$) is a function of the variations of the absolute temperature ($T$) and the pressure ($p$), as well as the slopes the partial derivative of the Gibbs free energy with respect to temperature at constant pressure ($DG_{T,p}$) and the partial derivative of the Gibbs free energy with respect to pressure at constant temperature ($DG_{p,T}$), expressed as:

$ dG = DG_{T,p} dT + DG_{p,T} dp $



Comparing this with the equation for the variation of Gibbs Free Energy ($dG$):

$ dG =- S dT + V dp $



and with the first law of thermodynamics, it follows that the partial derivative of the Gibbs free energy with respect to temperature at constant pressure ($DG_{T,p}$) is equal to negative the entropy ($S$):

$ DG_{T,p} =- S $

ID:(3552, 0)



Gibbs Free Energy and Equation of State by Constant Temperature

Equation

>Top, >Model


Comparing this with the first law of thermodynamics, it turns out that the partial derivative of the Gibbs free energy with respect to pressure at constant temperature ($DG_{p,T}$) is equal to the volume ($V$):

$ DG_{p,T} = V $

$DG_{p,T}$
Partial derivative of the Gibbs free energy with respect to pressure at constant temperature
$m^3$
9323
$V$
Volume
$m^3$
5226

The differential of the Gibbs free energy ($dG$) is a function of the variations of the absolute temperature ($T$) and the pressure ($p$), as well as the slopes the partial derivative of the Gibbs free energy with respect to temperature at constant pressure ($DG_{T,p}$) and the partial derivative of the Gibbs free energy with respect to pressure at constant temperature ($DG_{p,T}$), expressed as:

$ dG = DG_{T,p} dT + DG_{p,T} dp $



Comparing this with the equation for the variation of Gibbs Free Energy ($dG$):

$ dG =- S dT + V dp $



and with the first law of thermodynamics, it follows that the partial derivative of the Gibbs free energy with respect to pressure at constant temperature ($DG_{p,T}$) is equal to the volume ($V$):

$ DG_{p,T} = V $

ID:(3553, 0)



Gibbs free energy with partition function

Equation

>Top, >Model


Para calcular la función de Gibbs de la función partición basta ver como se construye la entalpía y la entropía de esta misma. Como se tiene que con absolute temperature $K$, enthalpy $J$, entropy $J/K$ and gibbs free energy $J$

$ G = H - T S $



con

$ H =-\displaystyle\frac{\partial \ln Z }{\partial \beta }+\displaystyle\frac{ V }{ \beta }\displaystyle\frac{\partial \ln Z }{\partial V }$



con

$ S = k_B ( \ln Z + \beta U )$



y con

$ k_B T \equiv\displaystyle\frac{1}{ \beta }$



se tiene que con

$ G =-\displaystyle\frac{1}{ \beta }\ln Z +\displaystyle\frac{ V }{ \beta }\displaystyle\frac{\partial\ln Z }{\partial V }$

ID:(3543, 0)



Gibbs free energy and its Maxwell relation

Equation

>Top, >Model


With the entropy ($S$), the volume ($V$), the absolute temperature ($T$) and the pressure ($p$) we obtain one of the so-called Maxwell relations:

$ DS_{p,T} = -DV_{T,p} $

$DS_{p,T}$
Partial derivative of entropy with respect to pressure at constant temperature
$m^3$
9326
$DV_{T,p}$
Partial derivative of volume with respect to temperature at constant pressure
$m^3/K$
9327

Since the differential of the Gibbs free energy ($dG$) is an exact differential, it implies that the gibbs free energy ($G$) with respect to the absolute temperature ($T$) and the pressure ($p$) must be independent of the order in which the function is derived:

$D(DG_{T,p}){p,T}=D(DG{p,T})_{T,p}$



Using the relationship for the slope the partial derivative of the Gibbs free energy with respect to pressure at constant temperature ($DG_{p,T}$) with respect to the volume ($V$)

$ DG_{p,T} = V $



and the relationship for the slope the partial derivative of the Gibbs free energy with respect to temperature at constant pressure ($DG_{T,p}$) with respect to the entropy ($S$)

$ DG_{T,p} =- S $



we can conclude that:

$ DS_{p,T} = -DV_{T,p} $

ID:(3557, 0)



Calculo de la derivada parcial de la entropía en la presión a temperatura constante

Equation

>Top, >Model


La derivada de la entropía en la presión a temperatura constante es

$ DS_{p,T} =\left(\displaystyle\frac{\partial S }{\partial p }\right)_ T $

$T$
Absolute temperature
$K$
5177
$S$
Entropy
$J/K$
5227
$DS_{p,T}$
Partial derivative of entropy with respect to pressure at constant temperature
$m^3$
9326
$p$
Pressure
$Pa$
5224

ID:(12423, 0)



Calculo de la derivada parcial del volumen en la temperatura a presión constante

Equation

>Top, >Model


La derivada el volumen en la temperatura a presión constante es

$ DV_{T,p} =\left(\displaystyle\frac{\partial V }{\partial T }\right)_ p $

$T$
Absolute temperature
$K$
5177
$DV_{T,p}$
Partial derivative of volume with respect to temperature at constant pressure
$m^3/K$
9327
$p$
Pressure
$Pa$
5224
$V$
Volume
$m^3$
5226

ID:(12421, 0)



0
Video

Video: Gibbs Free Energy