Enthalpy and partition function
Image
The enthalpy can be calculated from the partition function if it is remembered that this is equal to the internal energy and the pressure times the volume:
ID:(11724, 0)
Enthalpy
Equation
The enthalpy ($H$) is defined as the sum of the internal energy ($U$) and the formation energy. The latter corresponds to the work done in the formation, which is equal to $pV$ with the pressure ($p$) and the volume ($V$). Therefore, we have:
$ H = U + p V $ |
ID:(3536, 0)
Differential Enthalpy Relationship
Equation
The dependency of the differential enthalpy ($dH$) on the absolute temperature ($T$) and the entropy variation ($dS$), in addition to the volume ($V$) and the pressure Variation ($dp$), is given by:
$ dH = T dS + V dp $ |
If we differentiate the definition of the enthalpy ($H$), which depends on the internal energy ($U$), the pressure ($p$), and the volume ($V$), given by:
$ H = U + p V $ |
we obtain:
$dH = dU + Vdp + pdV$
using the differential enthalpy ($dH$), the internal energy differential ($dU$), the pressure Variation ($dp$), and the volume Variation ($dV$).
By differentiating the internal energy ($U$) with respect to the absolute temperature ($T$) and the entropy ($S$),
$ U = T S - p V $ |
we get:
$ dU = T dS - p dV $ |
with the internal energy differential ($dU$) and the entropy variation ($dS$).
Therefore, it finally results in:
$ dH = T dS + V dp $ |
ID:(3473, 0)
Calculo de la derivada parcial de la entalpia en la entropia a presión constante
Equation
La derivada de la entalpia en la entropia a presión constante es
$ DH_{S,p} =\left(\displaystyle\frac{\partial H }{\partial S }\right)_ p $ |
ID:(12028, 0)
Calculo de la derivada parcial de la entalpia en la presión a entropía constante
Equation
La derivada de la entalpia en la presión a entropia constante es
$ DH_{p,S} =\left(\displaystyle\frac{\partial H }{\partial p }\right)_ S $ |
ID:(12027, 0)
Enthalpy differential
Equation
The differential enthalpy ($dH$) is a function of the variations of the entropy variation ($dS$) and the pressure Variation ($dp$), as well as the slopes the partial derivative of enthalpy with respect to entropy at constant pressure ($DH_{S,p}$) and the partial derivative of enthalpy with respect to pressure at constant entropy ($DH_{p,S}$), expressed as:
$ dH = DH_{S,p} dS + DH_{p,S} dp $ |
Given that the enthalpy ($H$) depends on the entropy ($S$) and the pressure ($p$), the differential enthalpy ($dH$) can be calculated using:
$dH = \left(\displaystyle\frac{\partial H}{\partial S}\right)_p dS + \left(\displaystyle\frac{\partial H}{\partial p}\right)_S dp$
To simplify this expression, we introduce the notation for the derivative of the enthalpy ($H$) with respect to the entropy ($S$) while keeping the pressure ($p$) constant as:
$DH_{S,p} \equiv \left(\displaystyle\frac{\partial H}{\partial S}\right)_p$
and for the derivative of the enthalpy ($H$) with respect to the pressure ($p$) while keeping the entropy ($S$) constant as:
$DH_{p,S} \equiv \left(\displaystyle\frac{\partial H}{\partial p}\right)_S$
thus we can write:
$ dH = DH_{S,p} dS + DH_{p,S} dp $ |
ID:(8186, 0)
Enthalpy and equation of state at constant pressure
Equation
Comparing the differential enthalpy ($dH$) it turns out that the partial derivative of enthalpy with respect to entropy at constant pressure ($DH_{S,p}$) is equal to the absolute temperature ($T$):
$ DH_{S,p} = T $ |
The differential enthalpy ($dH$) is a function of the variations of the entropy variation ($dS$) and the pressure Variation ($dp$), as well as the slopes the partial derivative of enthalpy with respect to entropy at constant pressure ($DH_{S,p}$) and the partial derivative of enthalpy with respect to pressure at constant entropy ($DH_{p,S}$), expressed as:
$ dH = DH_{S,p} dS + DH_{p,S} dp $ |
Comparing this with the equation for the differential enthalpy ($dH$):
$ dH = T dS + V dp $ |
we find that the slope of the partial derivative of enthalpy with respect to entropy at constant pressure ($DH_{S,p}$) with respect to the variation of the absolute temperature ($T$) is:
$ DH_{S,p} = T $ |
ID:(3548, 0)
Enthalpy and equation of state at constant entropy
Equation
Comparing the differential enthalpy ($dH$) it turns out that the partial derivative of enthalpy with respect to pressure at constant entropy ($DH_{p,S}$) is equal to the volume ($V$):
$ DH_{p,S} = V $ |
The differential enthalpy ($dH$) is a function of the variations of the entropy variation ($dS$) and the pressure Variation ($dp$), as well as the slopes the partial derivative of enthalpy with respect to entropy at constant pressure ($DH_{S,p}$) and the partial derivative of enthalpy with respect to pressure at constant entropy ($DH_{p,S}$), which is expressed as:
$ dH = DH_{S,p} dS + DH_{p,S} dp $ |
When compared to the equation for the differential enthalpy ($dH$):
$ dH = T dS + V dp $ |
it follows that the slope of the partial derivative of enthalpy with respect to pressure at constant entropy ($DH_{p,S}$) with respect to the variation of the volume ($V$) is:
$ DH_{p,S} = V $ |
ID:(3538, 0)
Enthalpy and partition function
Equation
La entalpía se logra calcular de la función partición si se recuerda que esta es igual a la energía interna y a la presión por el volumen que con enthalpy $J$, internal energy $J$, pressure $Pa$ and volume $m^3$ es:
$ H = U + p V $ |
Como la energía interna es con igual a
$U=-\displaystyle\frac{\partial\ln Z}{\partial\beta}$ |
y con la presión es
$\bar{p}=\displaystyle\frac{1}{\beta}\displaystyle\frac{\partial\ln Z}{\partial V}$ |
se tiene que con es
$ H =-\displaystyle\frac{\partial \ln Z }{\partial \beta }+\displaystyle\frac{ V }{ \beta }\displaystyle\frac{\partial \ln Z }{\partial V }$ |
ID:(3537, 0)
Enthalpy and its relation of Maxwell
Equation
With the entropy ($S$), the volume ($V$), the absolute temperature ($T$) and the pressure ($p$) we obtain one of the so-called Maxwell relations:
$ DT_{p,S} = DV_{S,p} $ |
Since the differential enthalpy ($dH$) is an exact differential, we should note that the enthalpy ($H$) with respect to the entropy ($S$) and the pressure ($p$) must be independent of the order in which the function is derived:
$D(DH_{S,p}){p,S}=D(DH{p,S})_{S,p}$
Using the relationship between the slope the partial derivative of enthalpy with respect to entropy at constant pressure ($DH_{S,p}$) and the absolute temperature ($T$)
$ DH_{S,p} = T $ |
and the relationship between the slope the partial derivative of enthalpy with respect to pressure at constant entropy ($DH_{p,S}$) and the volume ($V$)
$ DH_{p,S} = V $ |
we can conclude that:
$ DT_{p,S} = DV_{S,p} $ |
ID:(3555, 0)
Calculo de la derivada parcial de la temperatura en la presión a entropía constante
Equation
La derivada de la temperatura en la presión a entropia constante es
$ DT_{p,S} =\left(\displaystyle\frac{\partial T }{\partial p }\right)_ S $ |
ID:(12030, 0)
Calculo de la derivada parcial del volumen en la entropia a presión constante
Equation
La derivada el volumen en la entropia a presión constante es
$ DV_{S,p} =\left(\displaystyle\frac{\partial V }{\partial S }\right)_ p $ |
ID:(12029, 0)
0
Video
Video: Enthalpy