Loading web-font TeX/Math/Italic
User: No user logged in.


Entalpía

Storyboard

Se obtienen mediante la función partición las distintas funciones y relaciones termodinámicas.

>Model

ID:(441, 0)



Enthalpy and partition function

Image

>Top


The enthalpy can be calculated from the partition function if it is remembered that this is equal to the internal energy and the pressure times the volume:

ID:(11724, 0)



Enthalpy

Equation

>Top, >Model


The enthalpy (H) is defined as the sum of the internal energy (U) and the formation energy. The latter corresponds to the work done in the formation, which is equal to pV with the pressure (p) and the volume (V). Therefore, we have:

H = U + p V

H
Enthalpy
J
5229
U
Internal energy
J
5228
p
Pressure
Pa
5224
V
Volume
m^3
5226
dH = T * dS + V * dp H = U + p * V H =-(d ln( Z )/d beta )+( V / beta )(d ln( Z )/d V ) DH_pS = V DH_Sp = T DT_pS = DV_Sp dH = DH_Sp * dS + DH_pS * dp DH_pS = dH / dp DH_Sp = dH / dS DV_Sp = dV / dS DT_pS = dT / dp TbetadHHHSdSZUDH_SpDH_pSDT_pSDV_SppdpVV

ID:(3536, 0)



Differential Enthalpy Relationship

Equation

>Top, >Model


The dependency of the differential enthalpy (dH) on the absolute temperature (T) and the entropy variation (dS), in addition to the volume (V) and the pressure Variation (dp), is given by:

dH = T dS + V dp

T
Absolute temperature
K
5177
dH
Differential enthalpy
J
5171
dS
Entropy variation
J/K
5225
dp
Pressure Variation
Pa
5240
V
Volume
m^3
5226
dH = T * dS + V * dp H = U + p * V H =-(d ln( Z )/d beta )+( V / beta )(d ln( Z )/d V ) DH_pS = V DH_Sp = T DT_pS = DV_Sp dH = DH_Sp * dS + DH_pS * dp DH_pS = dH / dp DH_Sp = dH / dS DV_Sp = dV / dS DT_pS = dT / dp TbetadHHHSdSZUDH_SpDH_pSDT_pSDV_SppdpVV

If we differentiate the definition of the enthalpy (H), which depends on the internal energy (U), the pressure (p), and the volume (V), given by:

H = U + p V



we obtain:

dH = dU + Vdp + pdV



using the differential enthalpy (dH), the internal energy differential (dU), the pressure Variation (dp), and the volume Variation (dV).

By differentiating the internal energy (U) with respect to the absolute temperature (T) and the entropy (S),

U = T S - p V



we get:

dU = T dS - p dV



with the internal energy differential (dU) and the entropy variation (dS).

Therefore, it finally results in:

dH = T dS + V dp

ID:(3473, 0)



Calculo de la derivada parcial de la entalpia en la entropia a presión constante

Equation

>Top, >Model


La derivada de la entalpia en la entropia a presión constante es

DH_{S,p} =\left(\displaystyle\frac{\partial H }{\partial S }\right)_ p

H
Enthalpy
J
5229
S
Entropy
J/K
5227
DH_{S,p}
Partial derivative of enthalpy with respect to entropy at constant pressure
K
8740
p
Pressure
Pa
5224
dH = T * dS + V * dp H = U + p * V H =-(d ln( Z )/d beta )+( V / beta )(d ln( Z )/d V ) DH_pS = V DH_Sp = T DT_pS = DV_Sp dH = DH_Sp * dS + DH_pS * dp DH_pS = dH / dp DH_Sp = dH / dS DV_Sp = dV / dS DT_pS = dT / dp TbetadHHHSdSZUDH_SpDH_pSDT_pSDV_SppdpVV

ID:(12028, 0)



Calculo de la derivada parcial de la entalpia en la presión a entropía constante

Equation

>Top, >Model


La derivada de la entalpia en la presión a entropia constante es

DH_{p,S} =\left(\displaystyle\frac{\partial H }{\partial p }\right)_ S

H
Enthalpy
J
5229
S
Entropy
J/K
5227
DH_{p,S}
Partial derivative of enthalpy with respect to pressure at constant entropy
m^3
8741
p
Pressure
Pa
5224
dH = T * dS + V * dp H = U + p * V H =-(d ln( Z )/d beta )+( V / beta )(d ln( Z )/d V ) DH_pS = V DH_Sp = T DT_pS = DV_Sp dH = DH_Sp * dS + DH_pS * dp DH_pS = dH / dp DH_Sp = dH / dS DV_Sp = dV / dS DT_pS = dT / dp TbetadHHHSdSZUDH_SpDH_pSDT_pSDV_SppdpVV

ID:(12027, 0)



Enthalpy differential

Equation

>Top, >Model


The differential enthalpy (dH) is a function of the variations of the entropy variation (dS) and the pressure Variation (dp), as well as the slopes the partial derivative of enthalpy with respect to entropy at constant pressure (DH_{S,p}) and the partial derivative of enthalpy with respect to pressure at constant entropy (DH_{p,S}), expressed as:

dH = DH_{S,p} dS + DH_{p,S} dp

dH
Differential enthalpy
J
5171
dS
Entropy variation
J/K
5225
DH_{S,p}
Partial derivative of enthalpy with respect to entropy at constant pressure
K
8740
DH_{p,S}
Partial derivative of enthalpy with respect to pressure at constant entropy
m^3
8741
dp
Pressure Variation
Pa
5240
dH = T * dS + V * dp H = U + p * V H =-(d ln( Z )/d beta )+( V / beta )(d ln( Z )/d V ) DH_pS = V DH_Sp = T DT_pS = DV_Sp dH = DH_Sp * dS + DH_pS * dp DH_pS = dH / dp DH_Sp = dH / dS DV_Sp = dV / dS DT_pS = dT / dp TbetadHHHSdSZUDH_SpDH_pSDT_pSDV_SppdpVV

Given that the enthalpy (H) depends on the entropy (S) and the pressure (p), the differential enthalpy (dH) can be calculated using:

dH = \left(\displaystyle\frac{\partial H}{\partial S}\right)_p dS + \left(\displaystyle\frac{\partial H}{\partial p}\right)_S dp



To simplify this expression, we introduce the notation for the derivative of the enthalpy (H) with respect to the entropy (S) while keeping the pressure (p) constant as:

DH_{S,p} \equiv \left(\displaystyle\frac{\partial H}{\partial S}\right)_p



and for the derivative of the enthalpy (H) with respect to the pressure (p) while keeping the entropy (S) constant as:

DH_{p,S} \equiv \left(\displaystyle\frac{\partial H}{\partial p}\right)_S



thus we can write:

dH = DH_{S,p} dS + DH_{p,S} dp

ID:(8186, 0)



Enthalpy and equation of state at constant pressure

Equation

>Top, >Model


Comparing the differential enthalpy (dH) it turns out that the partial derivative of enthalpy with respect to entropy at constant pressure (DH_{S,p}) is equal to the absolute temperature (T):

DH_{S,p} = T

T
Absolute temperature
K
5177
DH_{S,p}
Partial derivative of enthalpy with respect to entropy at constant pressure
K
8740
dH = T * dS + V * dp H = U + p * V H =-(d ln( Z )/d beta )+( V / beta )(d ln( Z )/d V ) DH_pS = V DH_Sp = T DT_pS = DV_Sp dH = DH_Sp * dS + DH_pS * dp DH_pS = dH / dp DH_Sp = dH / dS DV_Sp = dV / dS DT_pS = dT / dp TbetadHHHSdSZUDH_SpDH_pSDT_pSDV_SppdpVV

The differential enthalpy (dH) is a function of the variations of the entropy variation (dS) and the pressure Variation (dp), as well as the slopes the partial derivative of enthalpy with respect to entropy at constant pressure (DH_{S,p}) and the partial derivative of enthalpy with respect to pressure at constant entropy (DH_{p,S}), expressed as:

dH = DH_{S,p} dS + DH_{p,S} dp



Comparing this with the equation for the differential enthalpy (dH):

dH = T dS + V dp



we find that the slope of the partial derivative of enthalpy with respect to entropy at constant pressure (DH_{S,p}) with respect to the variation of the absolute temperature (T) is:

DH_{S,p} = T

ID:(3548, 0)



Enthalpy and equation of state at constant entropy

Equation

>Top, >Model


Comparing the differential enthalpy (dH) it turns out that the partial derivative of enthalpy with respect to pressure at constant entropy (DH_{p,S}) is equal to the volume (V):

DH_{p,S} = V

DH_{p,S}
Partial derivative of enthalpy with respect to pressure at constant entropy
m^3
8741
V
Volume
m^3
5226
dH = T * dS + V * dp H = U + p * V H =-(d ln( Z )/d beta )+( V / beta )(d ln( Z )/d V ) DH_pS = V DH_Sp = T DT_pS = DV_Sp dH = DH_Sp * dS + DH_pS * dp DH_pS = dH / dp DH_Sp = dH / dS DV_Sp = dV / dS DT_pS = dT / dp TbetadHHHSdSZUDH_SpDH_pSDT_pSDV_SppdpVV

The differential enthalpy (dH) is a function of the variations of the entropy variation (dS) and the pressure Variation (dp), as well as the slopes the partial derivative of enthalpy with respect to entropy at constant pressure (DH_{S,p}) and the partial derivative of enthalpy with respect to pressure at constant entropy (DH_{p,S}), which is expressed as:

dH = DH_{S,p} dS + DH_{p,S} dp



When compared to the equation for the differential enthalpy (dH):

dH = T dS + V dp



it follows that the slope of the partial derivative of enthalpy with respect to pressure at constant entropy (DH_{p,S}) with respect to the variation of the volume (V) is:

DH_{p,S} = V

ID:(3538, 0)



Enthalpy and partition function

Equation

>Top, >Model


La entalpía se logra calcular de la función partición si se recuerda que esta es igual a la energía interna y a la presión por el volumen que con enthalpy J, internal energy J, pressure Pa and volume m^3 es:

H = U + p V



Como la energía interna es con igual a

U=-\displaystyle\frac{\partial\ln Z}{\partial\beta}



y con la presión es

\bar{p}=\displaystyle\frac{1}{\beta}\displaystyle\frac{\partial\ln Z}{\partial V}



se tiene que con es

H =-\displaystyle\frac{\partial \ln Z }{\partial \beta }+\displaystyle\frac{ V }{ \beta }\displaystyle\frac{\partial \ln Z }{\partial V }

ID:(3537, 0)



Enthalpy and its relation of Maxwell

Equation

>Top, >Model


With the entropy (S), the volume (V), the absolute temperature (T) and the pressure (p) we obtain one of the so-called Maxwell relations:

DT_{p,S} = DV_{S,p}

DT_{p,S}
Partial derivative of temperature with respect to pressure at constant entropy
K/Pa
8743
DV_{S,p}
Partial derivative of volume with respect to entropy at constant pressure
K/Pa
8742
dH = T * dS + V * dp H = U + p * V H =-(d ln( Z )/d beta )+( V / beta )(d ln( Z )/d V ) DH_pS = V DH_Sp = T DT_pS = DV_Sp dH = DH_Sp * dS + DH_pS * dp DH_pS = dH / dp DH_Sp = dH / dS DV_Sp = dV / dS DT_pS = dT / dp TbetadHHHSdSZUDH_SpDH_pSDT_pSDV_SppdpVV

Since the differential enthalpy (dH) is an exact differential, we should note that the enthalpy (H) with respect to the entropy (S) and the pressure (p) must be independent of the order in which the function is derived:

D(DH_{S,p}){p,S}=D(DH{p,S})_{S,p}



Using the relationship between the slope the partial derivative of enthalpy with respect to entropy at constant pressure (DH_{S,p}) and the absolute temperature (T)

DH_{S,p} = T



and the relationship between the slope the partial derivative of enthalpy with respect to pressure at constant entropy (DH_{p,S}) and the volume (V)

DH_{p,S} = V



we can conclude that:

DT_{p,S} = DV_{S,p}

ID:(3555, 0)



Calculo de la derivada parcial de la temperatura en la presión a entropía constante

Equation

>Top, >Model


La derivada de la temperatura en la presión a entropia constante es

DT_{p,S} =\left(\displaystyle\frac{\partial T }{\partial p }\right)_ S

T
Absolute temperature
K
5177
S
Entropy
J/K
5227
DT_{p,S}
Partial derivative of temperature with respect to pressure at constant entropy
K/Pa
8743
p
Pressure
Pa
5224
dH = T * dS + V * dp H = U + p * V H =-(d ln( Z )/d beta )+( V / beta )(d ln( Z )/d V ) DH_pS = V DH_Sp = T DT_pS = DV_Sp dH = DH_Sp * dS + DH_pS * dp DH_pS = dH / dp DH_Sp = dH / dS DV_Sp = dV / dS DT_pS = dT / dp TbetadHHHSdSZUDH_SpDH_pSDT_pSDV_SppdpVV

ID:(12030, 0)



Calculo de la derivada parcial del volumen en la entropia a presión constante

Equation

>Top, >Model


La derivada el volumen en la entropia a presión constante es

DV_{S,p} =\left(\displaystyle\frac{\partial V }{\partial S }\right)_ p

S
Entropy
J/K
5227
DV_{S,p}
Partial derivative of volume with respect to entropy at constant pressure
K/Pa
8742
p
Pressure
Pa
5224
V
Volume
m^3
5226
dH = T * dS + V * dp H = U + p * V H =-(d ln( Z )/d beta )+( V / beta )(d ln( Z )/d V ) DH_pS = V DH_Sp = T DT_pS = DV_Sp dH = DH_Sp * dS + DH_pS * dp DH_pS = dH / dp DH_Sp = dH / dS DV_Sp = dV / dS DT_pS = dT / dp TbetadHHHSdSZUDH_SpDH_pSDT_pSDV_SppdpVV

ID:(12029, 0)



0
Video

Video: Enthalpy