Application in Microscopes

Storyboard

The principle of the microscope is to capture the small image, which above as parallel beams and enlarge it with a biconvex lens to form a larger inverted real image.

>Model

ID:(299, 0)



Beam geometry in a lens, near object

Image

>Top


In the event that the object is closer to the lens than the focal point, the diagram to determine image size and position is somewhat more complex. In this case the beams must be

projected from where they would have reached the object that radiates them
within the projection the same rules as in a real beam must be followed

In this case it is enough to diagram the same three beams again:

- parallel to the optical axis is refracted by the focus
- via the focus is refracted parallel to the optical axis
- via the origin of the continuous optical axis in a straight line

and the image is obtained in the same way:

ID:(9783, 0)



Lens Geometry

Image

>Top


Corrección con Lentes

ID:(1864, 0)



Geometry of the Beams on a Lens

Image

>Top


In the case of a biconvex lens a beam that reaches the lens

- parallel to the optical axis is refracted by the focus
- via the focus is refracted parallel to the optical axis
- via the origin of the continuous optical axis in a straight line

what in the case of an object at a distance greater than the photo corresponds to:

ID:(1856, 0)



Convex Lens

Image

>Top


A convex lens is a lens that refracts the parallel beam of light that strikes parallel through its focus:

ID:(1855, 0)



Position and focus of concave lens

Equation

>Top, >Model


Por similitud de los triángulos de los tamaños del objeto y la imagen y las posiciones del objeto y foco permite por similitud de triángulos mostrar que:

$\displaystyle\frac{1}{ f_{lc} }=\displaystyle\frac{1}{ s_o }+\displaystyle\frac{1}{ s_{lc} }$

$s_{lc}$
Distancia de la imagen del lente cóncavo
$m$
5155
$s_o$
Distancia del objeto al lente cóncavo
$m$
5154
$f_{lc}$
Foco del lente cóncavo
$m$
5156

Una relación se puede armar con los triángulos del lado del objeto. En este caso la similitud nos permite escribir que el tamaño del objeto a_o es a la distancia del objeto s_o al foco f es como el tamaño de la imagen a_i es a la distancia del foco f:\\n\\n

$\displaystyle\frac{a_o}{s_o-f}=\displaystyle\frac{a_i}{f}$



Con la relación de similitud de los triángulos

$\displaystyle\frac{ a_o }{ a_{lc} }=\displaystyle\frac{ s_o }{ s_{lc} }$



se puede mostrar que se cumple:

$\displaystyle\frac{1}{ f_{lc} }=\displaystyle\frac{1}{ s_o }+\displaystyle\frac{1}{ s_{lc} }$

ID:(3347, 0)



Proportions size and position of concave lens

Equation

>Top, >Model


For any lens you can draw characteristic beams with which you can similarly show that the sizes of the object and the image are in the same proportion as their distances to the optical element (lens or mirror).

If the object has a size a_o, it is at a distance s_o of the lens, the image is a size a_i and is at a distance s_i, by similarity of the triangles it can be shown that

$\displaystyle\frac{ a_o }{ a_{lc} }=\displaystyle\frac{ s_o }{ s_{lc} }$

$s_{lc}$
Distancia de la imagen del lente cóncavo
$m$
5155
$s_o$
Distancia del objeto al lente cóncavo
$m$
5154
$a_o$
Object Size
$m$
5152
$a_{lc}$
Tamaño de la imagen en un lente cóncavo
$m$
5153

ID:(3346, 0)



Concave Lens

Image

>Top


Convex lenses are thinner in their center widening towards the edges.

The light beams that have a parallel impact are scattered as if the light were emitted in the lens focus.

ID:(1854, 0)



Situation of a Biconcave Lens

Image

>Top


Lente Bi-Concavo grueso

ID:(1858, 0)



Diseño lente biconvexo

Image

>Top


Lente Bi-Convexo grueso

ID:(1857, 0)



Convex-Concave Lens Situation

Image

>Top


Lente Concavo-Convexo grueso

ID:(1859, 0)



Calculating the focus of a Bi-Convex Simple Lens

Equation

>Top, >Model


Una caso especial es aquel en que los radios son iguales, o sea R=R_1=R_2. Por ello el foco se calcula de:

$\displaystyle\frac{1}{ f_{vsd} }=( n -1)\left(\displaystyle\frac{2}{ R }-\displaystyle\frac{( n -1) d }{ n R ^2}\right)$

$n$
Air-Lens Refractive Index
$-$
5157
$f_{vsd}$
Foco del lente bi-convexo simétrico
$m$
9952
$R$
Lens Radio
$m$
5167
$d$
Lens Width
$m$
5158

ID:(3432, 0)



Concave-Convex Lens Situation

Image

>Top


Lente Convexo-Concavo grueso

ID:(1860, 0)



Calculating the Focus of a bi-convex thickness Lens

Equation

>Top, >Model


Los lentes reales tienen un grosor que se debe considerar. Si el lente tiene un indice de refracción n, un grosor en el centro de d y las curvaturas son R_1 y R_2, el foco f se calcula con

$\displaystyle\frac{1}{ f_{vvd} }=( n -1)\left(\displaystyle\frac{1}{ R_1 }+\displaystyle\frac{1}{ R_2 }-\displaystyle\frac{( n -1)d}{ n R_1 R_2 }\right)$

$n$
Air-Lens Refractive Index
$-$
5157
$f_{vvd}$
Foco del lente bi-convexo grueso
$m$
9951
$d$
Lens Width
$m$
5158
$R_2$
Radio of the Lens, Image Side
$m$
5160
$R_1$
Radio of the Lens, Source Side
$m$
5159

ID:(3348, 0)



Cálculo del foco de un lente convexo-concavo grueso simétrico

Equation

>Top, >Model


Una caso especial es aquel en que los radios son iguales, o sea R=R_1=R_2. Por ello el foco se calcula de:

$\displaystyle\frac{1}{ f_{vcs} }=\displaystyle\frac{( n -1)^2 d }{ n R ^2}$

$n$
Air-Lens Refractive Index
$-$
5157
$f_{vcs}$
Foco del lente convexo-cóncavo grueso
$m$
9837
$R$
Lens Radio
$m$
5167
$d$
Lens Width
$m$
5158

ID:(3430, 0)



Cálculo del foco de un lente convexo-cóncavo grueso

Equation

>Top, >Model


Los lentes reales tienen un grosor que se debe considerar. Si el lente tiene vidrio con indice de refracción n, un grosor en el centro de d y las curvaturas son R_1 y R_2, se puede calcular el foco f. Para ello basta tomar la ecuación del lente bi-convexo e introducir el radios de curvatura R_2 con el signo negativo:

$\displaystyle\frac{1}{ f_{vcs} }=( n -1)\left(\displaystyle\frac{1}{ R_1 }-\displaystyle\frac{1}{ R_2 }+\displaystyle\frac{( n -1) d }{ n R_1 R_2 }\right)$

$n$
Air-Lens Refractive Index
$-$
5157
$f_{vcd}$
Foco del lente convexo-cóncavo grueso
$m$
9837
$d$
Lens Width
$m$
5158
$R_2$
Radio of the Lens, Image Side
$m$
5160
$R_1$
Radio of the Lens, Source Side
$m$
5159

ID:(3350, 0)



Calculating the Focus of a Simple Bi-Concave Lens

Equation

>Top, >Model


Una caso especial es aquel en que los radios son iguales, o sea R=R_1=R_2. Por ello el foco se calcula de:

$\displaystyle\frac{1}{ f_{csd} }=-( n -1)\left(\displaystyle\frac{2}{ R } +\displaystyle\frac{( n -1) d }{ n R ^2}\right)$

$n$
Air-Lens Refractive Index
$-$
5157
$f_{csd}$
Foco del lente bi-cóncavo simétrico
$m$
9954
$R$
Lens Radio
$m$
5167
$d$
Lens Width
$m$
5158

ID:(3431, 0)



Cálculo del foco de un lente concavo-convexo grueso simétrico

Equation

>Top, >Model


Una caso especial es aquel en que los radios son iguales, o sea R=R_1=R_2. Por ello el foco se calcula de:

$\displaystyle\frac{1}{ f_{cvs} }=\displaystyle\frac{( n -1)^2 d }{ n R ^2}$

$n$
Air-Lens Refractive Index
$-$
5157
$R$
Lens Radio
$m$
5167
$d$
Lens Width
$m$
5158
$f_{cvs}$
Time
$m$
9848

ID:(3429, 0)



Calculating the Focus of a bi-concave thickness Lens

Equation

>Top, >Model


Los lentes reales tienen un grosor que se debe considerar. Si el lente tiene vidrio con indice de refracción n, un grosor en el centro de d y las curvaturas son R_1 y R_2, se puede calcular el foco f. Para ello basta tomar la ecuación del lente bi-convexo e introducir los radios de curvatura con el signo negativo:

$\displaystyle\frac{1}{ f_{ccd} }=-( n -1)\left(\displaystyle\frac{1}{ R_1 }+\displaystyle\frac{1}{ R_2 }+\displaystyle\frac{( n -1)d}{ n R_1 R_2 }\right)$

$n$
Air-Lens Refractive Index
$-$
5157
$f_{ccd}$
Foco del lente bi-cóncavo grueso
$m$
9953
$d$
Lens Width
$m$
5158
$R_2$
Radio of the Lens, Image Side
$m$
5160
$R_1$
Radio of the Lens, Source Side
$m$
5159

ID:(3349, 0)



Multiples lentes

Image

>Top


Cuando se acoplan dos lentes con sus respectivos focos, el primer lente genera una imagen que funciona como objeto para el segundo lente que a su vez genera una imagen de una imagen:

ID:(9465, 0)



Lens Simulator

Description

>Top


Aqui va el applet ...

ID:(194, 0)



Refraction depending on the color of light

Image

>Top


The refractive index of glass can depend on the wavelength or frequency of light. In such cases, the glass is referred to as 'chromatic.' If it does not exhibit this property, it is called 'achromatic.'

The main issue with this property is that the focal point of a lens depends on the color of light. Therefore, an optical lens has the problem that if the eye can focus on one color, it will not be able to simultaneously focus on objects of other colors.

ID:(1626, 0)