Media

Storyboard

Each medium is characterized by its own propagation speed that gives rise to a characteristic refractive index.

Since speed can depend on the frequency of light, the index of refraction is also a function of this.

>Model

ID:(1373, 0)



Frequency and Wavelength of Photon

Equation

>Top, >Model


The photon is described as a wave, and the photon frequency ($\nu$) is related to ($$) through the speed of Light ($c$), according to the following formula:

$ c = \nu \lambda $

$\nu$
Photon frequency
$Hz$
5564
$c$
Speed of Light
299792458
$m/s$
4999

Given that the photon frequency ($\nu$) is the inverse of the period ($T$):

$\nu=\displaystyle\frac{1}{T}$



this means that the speed of Light ($c$) is equal to the distance traveled in one oscillation, which is ($$), divided by the elapsed time, which corresponds to the period:

$c=\displaystyle\frac{\lambda}{T}$



In other words, the following relationship holds:

$ c = \nu \lambda $

This formula corresponds to the mechanical relationship that states the wave speed is equal to the wavelength (distance traveled) divided by the oscillation period, or inversely proportional to the frequency (the inverse of the period).

ID:(3953, 0)



Refraction Index

Equation

>Top, >Model


The refractive index, denoted as $n$, is defined as the ratio of the speed of light in a vacuum, denoted as $c$, to the speed of light in the medium, denoted as $c_m$:

$ n =\displaystyle\frac{ c }{ v }$

$n$
Air-Lens Refractive Index
$-$
5157
$c$
Speed of Light
299792458
$m/s$
4999
$v$
Speed of Light in medium
$m/s$
5144

ID:(3192, 0)



Refractive index and wavelength

Equation

>Top, >Model


If $n$ is the refractive index in a medium and $\lambda$ is the wavelength in a vacuum, then when propagating in the medium, the wavelength $\lambda_m$ will be

$ n =\displaystyle\frac{ \lambda }{ \lambda_m }$

$n$
Air-Lens Refractive Index
$-$
5157
$\lambda_m$
Largo de onda de la luz en un medio
$m$
7923
$\lambda$
Light Wavelength
$m$
4997

The energy of a wave or particle (photon) of light is given by

$ \epsilon = h \nu $



When this energy propagates from one medium, for example, a vacuum with a speed of light $c$, to another medium with a speed of light $c_m$, it is concluded that the frequency of light remains unchanged. However, this implies that, since the speed of light is equal to the product of frequency and wavelength, as expressed in the equation

$ c = \nu \lambda $



the wavelength must change as it transitions between mediums.

Therefore, if we have a wavelength of light in one medium $\lambda_m$ and in a vacuum $\lambda$, the refractive index can be defined as

$ n =\displaystyle\frac{ c }{ v }$



and can be expressed as

$n=\displaystyle\frac{c}{c_m}=\displaystyle\frac{\lambda\nu}{\lambda_m\nu}=\displaystyle\frac{\lambda}{\lambda_m}$



In other words,

$ n =\displaystyle\frac{ \lambda }{ \lambda_m }$

ID:(9776, 0)