Emisión de una fuente puntual

Storyboard

The propagation of light in a homogeneous medium occurs rectilinearly at a characteristic speed that depends on both the medium and the frequency (color) of the light.

Propagation can be described both as a corpuscular model, in which the particles are called photons, as a wave model.

>Model

ID:(300, 0)



Mechanisms

Iframe

>Top




Code
Concept

Mechanisms

ID:(16080, 0)



Light

Image

>Top


Light is an electromagnetic wave with a wavelength $\lambda$ that falls within the range of 380 nm to 750 nm, encompassing the visible spectrum that our eyes can perceive.

Light propagates in a straight line and can undergo refraction, meaning it can be deviated, if the speed of light changes due to the medium it passes through.

ID:(408, 0)



Propagation of light in a straight line and in a spherical shape

Image

>Top


Light travels in a straight line and radiates spherically around its source.

Because of this spherical distribution, its intensity decreases with distance from the source.

ID:(12677, 0)



Non-uniform emission: orifice

Image

>Top


When light passes through an aperture, it does not propagate uniformly but instead exhibits a distribution, creating what is known as a penumbra.

ID:(12679, 0)



Model

Top

>Top




Parameters

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$\theta$
theta
Angulo respecto a la dirección del haz
rad
$\Omega$
Omega
Angulo solido
-
$r$
r
Distancia a la fuente
m
$r_1$
r_1
Distancia a la fuente 1
m
$r_2$
r_2
Distancia a la fuente 2
m
$\Delta\Omega$
DOmega
Elemento de angulo solido
-
$\Delta\Phi$
DPhi
Elemento de flujo lumínico
J
$\Phi$
Phi
Flujo lumínico total
J
$I_1$
I_1
Intensidad de la luz 1
W/m^2
$I_2$
I_2
Intensidad de la luz 2
W/m^2
$E$
E
Irradiancia
lx
$I$
I
Light Intensity
W/m^2

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units

Calculations


First, select the equation: to , then, select the variable: to

Calculations

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

Variable Given Calculate Target : Equation To be used




Equations

#
Equation

$ \Delta\Phi = I \Delta\Omega $

DPhi = I * Domega


$ I_2 =\displaystyle\frac{ r_1 ^2}{ r_2 ^2} I_1 $

I_2 = r_2 ^2 * I_1 / r_1 ^2


$ \Phi =\displaystyle\int I d \Omega $

Phi =@INT( I , Omega )


$E=\displaystyle\frac{I\cos\theta}{r^2}$

E=I*cos(theta)/r^2

ID:(16081, 0)



Reduction in intensity with distance

Equation

>Top, >Model


If light emits in all directions uniformly, it will distribute itself evenly over the surface of an imaginary sphere with an area of

$4\pi r^2$



Hence, if we know its intensity at a distance $r_1$, we can predict its intensity at a distance $r_2$ using

$ I_2 =\displaystyle\frac{ r_1 ^2}{ r_2 ^2} I_1 $

$r_1$
Distancia a la fuente 1
$m$
9829
$r_2$
Distancia a la fuente 2
$m$
9830
$I_1$
Intensidad de la luz 1
$W/m^2$
9831
$I_2$
Intensidad de la luz 2
$W/m^2$
9832

Since the amount of light is conserved, the intensity (energy per area) multiplied by the area must be a constant, which leads us to the following relationship:

$4\pi r_1^2I_1=4\pi r_2^2I_2$



Therefore, we can express the relationship between intensities at different distances as:

$ I_2 =\displaystyle\frac{ r_1 ^2}{ r_2 ^2} I_1 $

ID:(12678, 0)



Flow

Equation

>Top, >Model


Radiative flux ($\Phi$) is calculated from the intensity (I) and the solid angle ($d\Omega$) being considered, using the formula:

$ \Delta\Phi = I \Delta\Omega $

$\Delta\Omega$
Elemento de angulo solido
$-$
9834
$\Delta\Phi$
Elemento de flujo lumínico
$J$
9833
$I$
Light Intensity
$W/m^2$
5140

and it is measured in watts (W).

In the context where flux is evaluated with respect to the human eye's ability to perceive luminous power, it is expressed in the unit of lumens (lm).

ID:(464, 0)



Total flow

Equation

>Top, >Model


Since the flux through an element of angle $d\Omega$ is defined as

$ \Delta\Phi = I \Delta\Omega $



the total flux is obtained by integrating the intensity over the entire surface, as shown in the following expression:

$ \Phi =\displaystyle\int I d \Omega $

$\Omega$
Angulo solido
$-$
9828
$\Phi$
Flujo lumínico total
$J$
9827
$I$
Light Intensity
$W/m^2$
5140

Si se quiere conocer el flujo total se debe sumar sobre toda la superficie. Esto es se debe integrar (=sumar) sobre toda la superficie de modo de

$ \Delta\Phi = I \Delta\Omega $



lo que arroja

$ \Phi =\displaystyle\int I d \Omega $

Some examples of total flux include:

Source | Flux

High-Pressure Xenon Lamp | 3.0E+6 lm

Arc Lamp | 1.0E+4 lm

65W Fluorescent Lamp | 3.3E+3 lm

60W Bulb | 6.2E+2 lm

ID:(138, 0)



Irradiance

Equation

>Top, >Model


When radiation with intensity I strikes a surface at an angle \theta relative to the direction of incidence, the irradiance, denoted as

$E=\displaystyle\frac{I\cos\theta}{r^2}$

$\theta$
Angulo respecto a la dirección del haz
$rad$
9826
$r$
Distancia a la fuente
$m$
9825
$E$
Irradiancia
$lx$
9824
$I$
Light Intensity
$W/m^2$
5140

is measured in Lux (lx), which corresponds to one lumen per square meter.

For natural light, the following values can be used as reference:

Scenario Irradiance

Noon, summer, sunny 1.0E+5 lx

Noon, summer, cloudy 2.0E+4 lx

Noon, winter, sunny 1.0E+4 lx

Noon, winter, cloudy 2.0E+3 lx

ID:(8601, 0)