Physical Pendulum

Storyboard

In the case of a compound pendulum with a real mass, the potential energy is generated by raising the center of mass against the gravitational field as the pendulum deviates by a given angle.

>Model

ID:(1421, 0)



Mechanisms

Iframe

>Top



Code
Concept

Mechanisms

ID:(15850, 0)



Oscillations with a physical pendulum

Description

>Top


Unlike the mathematical pendulum, the physical pendulum deals with a real, non-point mass. While the length $l$ is defined as the distance between the pivot point and the center of mass of the body, the potential energy of both pendulums is the same. However, the kinetic energy can no longer be approximated using expressions that depend solely on $l$ and $m$; instead, you need to know the actual moment of inertia of the body.

ID:(7097, 0)



Physical pendulum

Description

>Top


Unlike the mathematical pendulum, the physical pendulum deals with a real mass, not a point mass. As we define the length $l$ as the distance between the pivot and the center of mass of the body, the potential energy of both pendulums coincides. However, the kinetic energy can no longer be approximated by an expression that depends solely on $l$ and $m$; instead, it must incorporate the actual moment of inertia of the body.

ID:(1188, 0)



Model

Top

>Top



Parameters

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$\omega_0$
omega_0
Angular Frequency of Physical Pendulum
rad/s
$g$
g
Gravitational Acceleration
m/s^2
$m_g$
m_g
Gravitational mass
kg
$\theta_0$
theta_0
Initial Angle
rad
$K_r$
K_r
Kinetic energy of rotation
J
$I$
I
Moment of inertia for axis that does not pass through the CM
kg m^2
$L$
L
Pendulum Length
m
$\pi$
pi
Pi
rad
$V$
V
Potential Energy Pendulum, for small Angles
J
$\theta$
theta
Swing angle
rad
$E$
E
Total Energy
J

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$\omega$
omega
Angular Speed
rad/s
$\nu$
nu
Frequency
Hz
$T$
T
Period
s
$t$
t
Time
s

Calculations


First, select the equation: to , then, select the variable: to

Calculations

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

Variable Given Calculate Target : Equation To be used




Equations

#
Equation

$ E = K_r + V $

E = K + V


$ K_r =\displaystyle\frac{1}{2} I \omega ^2$

K_r = I * omega ^2/2


$ \nu =\displaystyle\frac{1}{ T }$

nu =1/ T


$ \omega_0 = 2 \pi \nu $

omega = 2* pi * nu


$ \omega_0 = \displaystyle\frac{2 \pi }{ T }$

omega = 2* pi / T


$ \omega_0 ^2=\displaystyle\frac{ m g L }{ I }$

omega_0 ^2 = m * g * L / I


$ \omega = - \theta_0 \omega_0 \sin \omega_0 t $

v = - x_0 * omega_0 *sin( omega_0 * t )


$ V =\displaystyle\frac{1}{2} m_g g L \theta ^2$

V = m_g * g * L * theta ^2/2


$ E =\displaystyle\frac{1}{2} m_g g L \theta_0 ^2$

V = m_g * g * L * theta ^2/2


$ \theta = \theta_0 \cos \omega_0 t $

x = x_0 *cos( omega_0 * t )

ID:(15853, 0)



Total Energy

Equation

>Top, >Model


The total energy corresponds to the sum of the total kinetic energy and the potential energy:

$ E = K_r + V $

$ E = K + V $

$V$
$V$
Potential Energy Pendulum, for small Angles
$J$
6285
$E$
Total Energy
$J$
5290
$K$
$K_r$
Kinetic energy of rotation
$J$
5289

ID:(3687, 0)



Kinetic Energy of Rotation

Equation

>Top, >Model


In the case being studied of translational motion, the definition of energy

$ \Delta W = T \Delta\theta $



is applied to Newton's second law

$ T = I \alpha $



resulting in the expression

$ K_r =\displaystyle\frac{1}{2} I \omega ^2$

$\omega$
Angular Speed
$rad/s$
6068
$K_r$
Kinetic energy of rotation
$J$
5289
$I$
Moment of inertia for axis that does not pass through the CM
$kg m^2$
5315

The energy required for an object to change its angular velocity from $\omega_1$ to $\omega_2$ can be calculated using the definition

$ \Delta W = T \Delta\theta $



Applying Newton's second law, this expression can be rewritten as

$\Delta W=I \alpha \Delta\theta=I\displaystyle\frac{\Delta\omega}{\Delta t}\Delta\theta$



Using the definition of angular velocity

$ \bar{\omega} \equiv\displaystyle\frac{ \Delta\theta }{ \Delta t }$



we get

$\Delta W=I\displaystyle\frac{\Delta\omega}{\Delta t}\Delta\theta=I \omega \Delta\omega$



The difference in angular velocities is

$\Delta\omega=\omega_2-\omega_1$



On the other hand, angular velocity itself can be approximated with the average angular velocity

$\omega=\displaystyle\frac{\omega_1+\omega_2}{2}$



Using both expressions, we obtain the equation

$\Delta W=I \omega \Delta \omega=I(\omega_2-\omega_1)\displaystyle\frac{(\omega_1+\omega_2)}{2}=\displaystyle\frac{I}{2}(\omega_2^2-\omega_1^2)$



Thus, the change in energy is given by

$\Delta W=\displaystyle\frac{I}{2}\omega_2^2-\displaystyle\frac{I}{2}\omega_1^2$



This allows us to define kinetic energy as

$ K_r =\displaystyle\frac{1}{2} I \omega ^2$

ID:(3255, 0)



Potential energy of a mathematical pendulum for small angles (1)

Equation

>Top, >Model


The gravitational potential energy of a pendulum is

$ U = m g L (1-\cos \theta )$



which for small angles can be approximated as:

$ V =\displaystyle\frac{1}{2} m_g g L \theta ^2$

$g$
Gravitational Acceleration
9.8
$m/s^2$
5310
$m_g$
Gravitational mass
$kg$
8762
$L$
Pendulum Length
$m$
6282
$V$
Potential Energy Pendulum, for small Angles
$J$
6285
$\theta$
Swing angle
$rad$
6283

The gravitational potential energy of a pendulum with mass m, suspended from a string of length L and deflected by an angle \theta is given by

$ U = m g L (1-\cos \theta )$



where g is the acceleration due to gravity.

For small angles, the cosine function can be approximated using a Taylor series expansion up to the second term

$\cos\theta\sim 1-\displaystyle\frac{1}{2}\theta^2$



This approximation leads to the simplification of the potential energy to

$ V =\displaystyle\frac{1}{2} m_g g L \theta ^2$



It's important to note that the angle must be expressed in radians.

ID:(4514, 1)



Angular frequency for a physical pendulum

Equation

>Top, >Model


Regarding the physical pendulum:



The energy is given by:

$E=\displaystyle\frac{1}{2}I\omega^2+\displaystyle\frac{1}{2}mgl\theta^2$



As a result, the angular frequency is:

$ \omega_0 ^2=\displaystyle\frac{ m g L }{ I }$

$\omega_0$
Angular Frequency of Physical Pendulum
$rad/s$
6288
$g$
Gravitational Acceleration
9.8
$m/s^2$
5310
$m_g$
Gravitational mass
$kg$
8762
$I$
Moment of inertia for axis that does not pass through the CM
$kg m^2$
5315
$L$
Pendulum Length
$m$
6282

Given that the kinetic energy of the physical pendulum with moment of inertia $I$ and angular velocity $\omega$ is represented by

$ K_r =\displaystyle\frac{1}{2} I \omega ^2$



and the gravitational potential energy is given by

$ V =\displaystyle\frac{1}{2} m_g g L \theta ^2$



where $m$ is mass, $l$ is string length, $\theta$ is the angle, and $g$ is angular acceleration, the energy equation can be expressed as

$E=\displaystyle\frac{1}{2}I\omega^2+\displaystyle\frac{1}{2}mgl\theta^2$



As the period is defined as

$T=2\pi\sqrt{\displaystyle\frac{I}{mgl}}$



we can determine the angular frequency as

$ \omega_0 ^2=\displaystyle\frac{ m g L }{ I }$

ID:(4517, 0)



Potential energy of a mathematical pendulum for small angles (2)

Equation

>Top, >Model


The gravitational potential energy of a pendulum is

$ U = m g L (1-\cos \theta )$



which for small angles can be approximated as:

$ E =\displaystyle\frac{1}{2} m_g g L \theta_0 ^2$

$ V =\displaystyle\frac{1}{2} m_g g L \theta ^2$

$g$
Gravitational Acceleration
9.8
$m/s^2$
5310
$m_g$
Gravitational mass
$kg$
8762
$L$
Pendulum Length
$m$
6282
$V$
$E$
Total Energy
$J$
5290
$\theta$
$\theta_0$
Initial Angle
$rad$
5296

The gravitational potential energy of a pendulum with mass m, suspended from a string of length L and deflected by an angle \theta is given by

$ U = m g L (1-\cos \theta )$



where g is the acceleration due to gravity.

For small angles, the cosine function can be approximated using a Taylor series expansion up to the second term

$\cos\theta\sim 1-\displaystyle\frac{1}{2}\theta^2$



This approximation leads to the simplification of the potential energy to

$ V =\displaystyle\frac{1}{2} m_g g L \theta ^2$



It's important to note that the angle must be expressed in radians.

ID:(4514, 2)



Relación frecuencia angular - frecuencia

Equation

>Top, >Model


Como la frecuencia angular es con angular frequency $rad/s$, period $s$ and pi $rad$ igual a

$ \omega_0 = \displaystyle\frac{2 \pi }{ T }$



y la frecuencia con frequency $Hz$ and period $s$ igual a

$ \nu =\displaystyle\frac{1}{ T }$



se tiene que con frequency $Hz$ and period $s$ igual a

$ \omega_0 = 2 \pi \nu $

$ \omega = 2 \pi \nu $

$\omega$
$\omega_0$
Angular Frequency of Physical Pendulum
$rad/s$
6288
$\nu$
Frequency
$Hz$
5077
$\pi$
Pi
3.1415927
$rad$
5057

ID:(12338, 0)



Angular frequency

Equation

>Top, >Model


The angular frequency ($\omega$) is with the period ($T$) equal to

$ \omega_0 = \displaystyle\frac{2 \pi }{ T }$

$ \omega = \displaystyle\frac{2 \pi }{ T }$

$\omega$
$\omega_0$
Angular Frequency of Physical Pendulum
$rad/s$
6288
$T$
Period
$s$
5078
$\pi$
Pi
3.1415927
$rad$
5057

ID:(12335, 0)



Frequency

Equation

>Top, >Model


The frequency ($\nu$) corresponds to the number of times an oscillation occurs within one second. The period ($T$) represents the time it takes for one oscillation to occur. Therefore, the number of oscillations per second is:

$ \nu =\displaystyle\frac{1}{ T }$

$\nu$
Frequency
$Hz$
5077
$T$
Period
$s$
5078

Frequency is indicated in Hertz (Hz).

ID:(4427, 0)



Oscillation amplitude

Equation

>Top, >Model


With the description of the oscillation using

$ z = x_0 \cos \omega_0 t + i x_0 \sin \omega_0 t $



the real part corresponds to the temporal evolution of the amplitude

$ \theta = \theta_0 \cos \omega_0 t $

$ x = x_0 \cos \omega_0 t $

$x_0$
$\theta_0$
Initial Angle
$m$
5296
$x$
$\theta$
Swing angle
$m$
6283
$\omega_0$
$\omega_0$
Angular Frequency of Physical Pendulum
$rad/s$
6288
$t$
Time
$s$
5264

ID:(14074, 0)



Swing speed

Equation

>Top, >Model


When we extract the real part of the derivative of the complex number representing the oscillation

$ \dot{z} = i \omega_0 z $



whose real part corresponds to the velocity

$ \omega = - \theta_0 \omega_0 \sin \omega_0 t $

$ v = - x_0 \omega_0 \sin \omega_0 t $

$\omega_0$
$\omega_0$
Angular Frequency of Physical Pendulum
$rad/s$
6288
$x_0$
$\theta_0$
Initial Angle
$m$
5296
$v$
$\omega$
Angular Speed
$m/s$
6068
$t$
Time
$s$
5264

Using the complex number

$ z = x_0 \cos \omega_0 t + i x_0 \sin \omega_0 t $



introduced in

$ \dot{z} = i \omega_0 z $



we obtain

$\dot{z} = i\omega_0 z = i \omega_0 x_0 \cos \omega_0 t - \omega_0 x_0 \sin \omega_0 t$



thus, the velocity is obtained as the real part

$ v = - x_0 \omega_0 \sin \omega_0 t $

ID:(14076, 0)