Processing math: 0%
User: No user logged in.


Intercept at constant angular acceleration

Storyboard

The objects can intersect when they coincide in angle at the same instant. To achieve this, they must move from their respective initial angles and angular velocities with angular accelerations that allow them to coincide in angle and time at the end of the journey.

>Model

ID:(1451, 0)



Mechanisms

Iframe

>Top



Code
Concept
Variation of angular velocity

Mechanisms

AnglesAngular velocitiesVariation of angular velocity

ID:(15416, 0)



Variation of angular velocity and duration

Concept

>Top


In a scenario of two-body motion, the first one alters the angular velocity difference of the first body (\Delta\omega_1) during the travel time of first object (\Delta t_1) with the angular acceleration of the first body (\alpha_1).

\alpha_1 \equiv \displaystyle\frac{ \Delta\omega_1 }{ \Delta t_1 }



Subsequently, the second body advances, altering the angular velocity difference of the second body (\Delta\omega_2) during the travel time of second object (\Delta t_2) with the angular acceleration of the second body (\alpha_2).

\alpha_2 \equiv \displaystyle\frac{ \Delta\omega_2 }{ \Delta t_2 }



Graphically represented, we obtain a velocity-time diagram as shown below:



The key here is that the values the angular velocity difference of the first body (\Delta\omega_1) and the angular velocity difference of the second body (\Delta\omega_2), and the values the travel time of first object (\Delta t_1) and the travel time of second object (\Delta t_2), are such that both bodies coincide in angle and time.

ID:(10579, 0)



Angular velocity and intersection times

Concept

>Top


In the case of two bodies, the motion of the first can be described by a function involving the points the initial angular velocity of the first body (\omega_{01}), the final angular velocity of the first body (\omega_1), the intersection time (t), and the initial time of first object (t_1), represented by a line with a slope of the angular acceleration of the first body (\alpha_1):

\omega_1 = \omega_{01} + \alpha_1 ( t - t_1 )



For the motion of the second body, defined by the points the initial angular velocity of the second body (\omega_{02}), the final angular velocity of the second body (\omega_2), the initial time of second object (t_2), and the intersection time (t), a second line with a slope of the angular acceleration of the second body (\alpha_2) is utilized:

\omega_2 = \omega_{02} + \alpha_2 ( t - t_2 )



This is represented as:

ID:(9872, 0)



Evolution of the angle of the bodies

Description

>Top


In the case of a two-body motion, the angle at which the trajectory of the first ends coincides with that of the second body at the angle of intersection (\theta).

Similarly, the time at which the trajectory of the first ends coincides with that of the second body at the intersection time (t).

For the first body, the angle of intersection (\theta) depends on the initial angle of the first body (\theta_1), the initial angular velocity of the first body (\omega_{01}), the angular acceleration of the first body (\alpha_1), the initial time of first object (t_1), as follows:

\theta = \theta_1 + \omega_{01} ( t - t_1 )+\displaystyle\frac{1}{2} \alpha_1 ( t - t_1 )^2



While for the second body, the angle of intersection (\theta) depends on the initial angle of the second body (\theta_2), the initial angular velocity of the second body (\omega_{02}), the angular acceleration of the second body (\alpha_2), the initial time of second object (t_2), as follows:

\theta = \theta_2 + \omega_{02} ( t - t_2 )+\displaystyle\frac{1}{2} \alpha_2 ( t - t_2 )^2



This is represented as:

ID:(12514, 0)



Model

Top

>Top



Parameters

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
\alpha_1
alpha_1
Angular acceleration of the first body
rad/s^2
\alpha_2
alpha_2
Angular acceleration of the second body
rad/s^2
a_1
a_1
First body acceleration
m/s^2
r
r
Radio
m
a_2
a_2
Second body acceleration
m/s^2

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
\theta
theta
Angle of intersection
rad
\Delta\theta_1
Dtheta_1
Angle traveled by the first body
rad
\Delta\theta_2
Dtheta_2
Angle traveled by the second body
rad
\Delta\omega_1
Domega_1
Angular velocity difference of the first body
rad/s
\Delta\omega_2
Domega_2
Angular velocity difference of the second body
rad/s
\omega_1
omega_1
Final angular velocity of the first body
rad/s
\omega_2
omega_2
Final angular velocity of the second body
rad/s
\theta_1
theta_1
Initial angle of the first body
rad
\theta_2
theta_2
Initial angle of the second body
rad
\omega_{01}
omega_01
Initial angular velocity of the first body
rad/s
\omega_{02}
omega_02
Initial angular velocity of the second body
rad/s
t_1
t_1
Initial time of first object
s
t_2
t_2
Initial time of second object
s
t
t
Intersection time
s
\Delta t_1
Dt_1
Travel time of first object
s
\Delta t_2
Dt_2
Travel time of second object
s

Calculations


First, select the equation: to , then, select the variable: to
a_1 = r * alpha_1 a_2 = r * alpha_2 alpha_1 = Domega_1 / Dt_1 alpha_2 = Domega_2 / Dt_2 Domega_1 = omega_1 - omega_01 Domega_2 = omega_2 - omega_02 Dt_1 = t - t_1 Dt_2 = t - t_2 Dtheta_1 = theta - theta_1 Dtheta_2 = theta - theta_2 omega_1 = omega_01 + alpha_1 * ( t - t_1 ) omega_2 = omega_02 + alpha_2 * ( t - t_2 ) theta = theta_1 + omega_01 *( t - t_1 )+ alpha_1 *( t - t_1 )^2/2 theta = theta_2 + omega_02 *( t - t_2 )+ alpha_2 *( t - t_2 )^2/2 theta = theta_1 +( omega_1 ^2 - omega_01 ^2)/(2* alpha_1 ) theta = theta_2 +( omega_2 ^2 - omega_02 ^2)/(2* alpha_2 )thetaDtheta_1Dtheta_2alpha_1alpha_2Domega_1Domega_2omega_1omega_2a_1theta_1theta_2omega_01omega_02t_1t_2tra_2Dt_1Dt_2

Calculations

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

Variable Given Calculate Target : Equation To be used
a_1 = r * alpha_1 a_2 = r * alpha_2 alpha_1 = Domega_1 / Dt_1 alpha_2 = Domega_2 / Dt_2 Domega_1 = omega_1 - omega_01 Domega_2 = omega_2 - omega_02 Dt_1 = t - t_1 Dt_2 = t - t_2 Dtheta_1 = theta - theta_1 Dtheta_2 = theta - theta_2 omega_1 = omega_01 + alpha_1 * ( t - t_1 ) omega_2 = omega_02 + alpha_2 * ( t - t_2 ) theta = theta_1 + omega_01 *( t - t_1 )+ alpha_1 *( t - t_1 )^2/2 theta = theta_2 + omega_02 *( t - t_2 )+ alpha_2 *( t - t_2 )^2/2 theta = theta_1 +( omega_1 ^2 - omega_01 ^2)/(2* alpha_1 ) theta = theta_2 +( omega_2 ^2 - omega_02 ^2)/(2* alpha_2 )thetaDtheta_1Dtheta_2alpha_1alpha_2Domega_1Domega_2omega_1omega_2a_1theta_1theta_2omega_01omega_02t_1t_2tra_2Dt_1Dt_2




Equations

#
Equation

a_1 = r \alpha_1

a = r * alpha


a_2 = r \alpha_2

a = r * alpha


\alpha_1 \equiv \displaystyle\frac{ \Delta\omega_1 }{ \Delta t_1 }

alpha_m = Domega / Dt


\alpha_2 \equiv \displaystyle\frac{ \Delta\omega_2 }{ \Delta t_2 }

alpha_m = Domega / Dt


\Delta\omega_1 = \omega_1 - \omega_{01}

Domega = omega - omega_0


\Delta\omega_2 = \omega_2 - \omega_{02}

Domega = omega - omega_0


\Delta t_1 \equiv t - t_1

Dt = t - t_0


\Delta t_2 \equiv t - t_2

Dt = t - t_0


\Delta\theta_1 = \theta - \theta_1

Dtheta = theta - theta_0


\Delta\theta_2 = \theta - \theta_2

Dtheta = theta - theta_0


\omega_1 = \omega_{01} + \alpha_1 ( t - t_1 )

omega = omega_0 + alpha_0 * ( t - t_0 )


\omega_2 = \omega_{02} + \alpha_2 ( t - t_2 )

omega = omega_0 + alpha_0 * ( t - t_0 )


\theta = \theta_1 + \omega_{01} ( t - t_1 )+\displaystyle\frac{1}{2} \alpha_1 ( t - t_1 )^2

theta = theta_0 + omega_0 *( t - t_0 )+ alpha_0 *( t - t_0 )^2/2


\theta = \theta_2 + \omega_{02} ( t - t_2 )+\displaystyle\frac{1}{2} \alpha_2 ( t - t_2 )^2

theta = theta_0 + omega_0 *( t - t_0 )+ alpha_0 *( t - t_0 )^2/2


\theta = \theta_1 +\displaystyle\frac{ \omega_1 ^2- \omega_{01} ^2}{2 \alpha_1 }

theta = theta_0 +( omega ^2 - omega_0 ^2)/(2* alpha_0 )


\theta = \theta_2 +\displaystyle\frac{ \omega_2 ^2- \omega_{02} ^2}{2 \alpha_2 }

theta = theta_0 +( omega ^2 - omega_0 ^2)/(2* alpha_0 )

ID:(15427, 0)



Variation of angular speeds (1)

Equation

>Top, >Model


Acceleration is defined as the change in angular velocity per unit of time.

Therefore, the angular acceleration the difference in Angular Speeds (\Delta\omega) can be expressed in terms of the angular velocity the angular Speed (\omega) and time the initial Angular Speed (\omega_0) as follows:

\Delta\omega_1 = \omega_1 - \omega_{01}

\Delta\omega = \omega - \omega_0

\omega
\omega_1
Final angular velocity of the first body
rad/s
10324
\Delta\omega
\Delta\omega_1
Angular velocity difference of the first body
rad/s
10326
\omega_0
\omega_{01}
Initial angular velocity of the first body
rad/s
10322
alpha_1 = Domega_1 / Dt_1 alpha_2 = Domega_2 / Dt_2 a_1 = r * alpha_1 a_2 = r * alpha_2 omega_1 = omega_01 + alpha_1 * ( t - t_1 ) omega_2 = omega_02 + alpha_2 * ( t - t_2 ) Dtheta_1 = theta - theta_1 Dtheta_2 = theta - theta_2 Domega_1 = omega_1 - omega_01 Domega_2 = omega_2 - omega_02 theta = theta_1 + omega_01 *( t - t_1 )+ alpha_1 *( t - t_1 )^2/2 theta = theta_2 + omega_02 *( t - t_2 )+ alpha_2 *( t - t_2 )^2/2 Dt_1 = t - t_1 Dt_2 = t - t_2 theta = theta_1 +( omega_1 ^2 - omega_01 ^2)/(2* alpha_1 ) theta = theta_2 +( omega_2 ^2 - omega_02 ^2)/(2* alpha_2 )thetaDtheta_1Dtheta_2alpha_1alpha_2Domega_1Domega_2omega_1omega_2a_1theta_1theta_2omega_01omega_02t_1t_2tra_2Dt_1Dt_2

ID:(3681, 1)



Variation of angular speeds (2)

Equation

>Top, >Model


Acceleration is defined as the change in angular velocity per unit of time.

Therefore, the angular acceleration the difference in Angular Speeds (\Delta\omega) can be expressed in terms of the angular velocity the angular Speed (\omega) and time the initial Angular Speed (\omega_0) as follows:

\Delta\omega_2 = \omega_2 - \omega_{02}

\Delta\omega = \omega - \omega_0

\omega
\omega_2
Final angular velocity of the second body
rad/s
10325
\Delta\omega
\Delta\omega_2
Angular velocity difference of the second body
rad/s
10327
\omega_0
\omega_{02}
Initial angular velocity of the second body
rad/s
10323
alpha_1 = Domega_1 / Dt_1 alpha_2 = Domega_2 / Dt_2 a_1 = r * alpha_1 a_2 = r * alpha_2 omega_1 = omega_01 + alpha_1 * ( t - t_1 ) omega_2 = omega_02 + alpha_2 * ( t - t_2 ) Dtheta_1 = theta - theta_1 Dtheta_2 = theta - theta_2 Domega_1 = omega_1 - omega_01 Domega_2 = omega_2 - omega_02 theta = theta_1 + omega_01 *( t - t_1 )+ alpha_1 *( t - t_1 )^2/2 theta = theta_2 + omega_02 *( t - t_2 )+ alpha_2 *( t - t_2 )^2/2 Dt_1 = t - t_1 Dt_2 = t - t_2 theta = theta_1 +( omega_1 ^2 - omega_01 ^2)/(2* alpha_1 ) theta = theta_2 +( omega_2 ^2 - omega_02 ^2)/(2* alpha_2 )thetaDtheta_1Dtheta_2alpha_1alpha_2Domega_1Domega_2omega_1omega_2a_1theta_1theta_2omega_01omega_02t_1t_2tra_2Dt_1Dt_2

ID:(3681, 2)



Elapsed time (1)

Equation

>Top, >Model


To describe the motion of an object, we need to calculate the time elapsed (\Delta t). This magnitude is obtained by measuring the start Time (t_0) and the the time (t) of said motion. The duration is determined by subtracting the initial time from the final time:

\Delta t_1 \equiv t - t_1

\Delta t \equiv t - t_0

t_0
t_1
Initial time of first object
s
10252
t
t
Intersection time
s
10259
\Delta t
\Delta t_1
Travel time of first object
s
10256
alpha_1 = Domega_1 / Dt_1 alpha_2 = Domega_2 / Dt_2 a_1 = r * alpha_1 a_2 = r * alpha_2 omega_1 = omega_01 + alpha_1 * ( t - t_1 ) omega_2 = omega_02 + alpha_2 * ( t - t_2 ) Dtheta_1 = theta - theta_1 Dtheta_2 = theta - theta_2 Domega_1 = omega_1 - omega_01 Domega_2 = omega_2 - omega_02 theta = theta_1 + omega_01 *( t - t_1 )+ alpha_1 *( t - t_1 )^2/2 theta = theta_2 + omega_02 *( t - t_2 )+ alpha_2 *( t - t_2 )^2/2 Dt_1 = t - t_1 Dt_2 = t - t_2 theta = theta_1 +( omega_1 ^2 - omega_01 ^2)/(2* alpha_1 ) theta = theta_2 +( omega_2 ^2 - omega_02 ^2)/(2* alpha_2 )thetaDtheta_1Dtheta_2alpha_1alpha_2Domega_1Domega_2omega_1omega_2a_1theta_1theta_2omega_01omega_02t_1t_2tra_2Dt_1Dt_2

ID:(4353, 1)



Elapsed time (2)

Equation

>Top, >Model


To describe the motion of an object, we need to calculate the time elapsed (\Delta t). This magnitude is obtained by measuring the start Time (t_0) and the the time (t) of said motion. The duration is determined by subtracting the initial time from the final time:

\Delta t_2 \equiv t - t_2

\Delta t \equiv t - t_0

t_0
t_2
Initial time of second object
s
10253
t
t
Intersection time
s
10259
\Delta t
\Delta t_2
Travel time of second object
s
10257
alpha_1 = Domega_1 / Dt_1 alpha_2 = Domega_2 / Dt_2 a_1 = r * alpha_1 a_2 = r * alpha_2 omega_1 = omega_01 + alpha_1 * ( t - t_1 ) omega_2 = omega_02 + alpha_2 * ( t - t_2 ) Dtheta_1 = theta - theta_1 Dtheta_2 = theta - theta_2 Domega_1 = omega_1 - omega_01 Domega_2 = omega_2 - omega_02 theta = theta_1 + omega_01 *( t - t_1 )+ alpha_1 *( t - t_1 )^2/2 theta = theta_2 + omega_02 *( t - t_2 )+ alpha_2 *( t - t_2 )^2/2 Dt_1 = t - t_1 Dt_2 = t - t_2 theta = theta_1 +( omega_1 ^2 - omega_01 ^2)/(2* alpha_1 ) theta = theta_2 +( omega_2 ^2 - omega_02 ^2)/(2* alpha_2 )thetaDtheta_1Dtheta_2alpha_1alpha_2Domega_1Domega_2omega_1omega_2a_1theta_1theta_2omega_01omega_02t_1t_2tra_2Dt_1Dt_2

ID:(4353, 2)



Mean Angular Acceleration (1)

Equation

>Top, >Model


The rate at which angular velocity changes over time is defined as the mean Angular Acceleration (\bar{\alpha}). To measure it, we need to observe the difference in Angular Speeds (\Delta\omega) and the time elapsed (\Delta t).

The equation describing the mean Angular Acceleration (\bar{\alpha}) is as follows:

\alpha_1 \equiv \displaystyle\frac{ \Delta\omega_1 }{ \Delta t_1 }

\bar{\alpha} \equiv \displaystyle\frac{ \Delta\omega }{ \Delta t }

\Delta\omega
\Delta\omega_1
Angular velocity difference of the first body
rad/s
10326
\bar{\alpha}
\alpha_1
Angular acceleration of the first body
rad/s^2
10320
\Delta t
\Delta t_1
Travel time of first object
s
10256
alpha_1 = Domega_1 / Dt_1 alpha_2 = Domega_2 / Dt_2 a_1 = r * alpha_1 a_2 = r * alpha_2 omega_1 = omega_01 + alpha_1 * ( t - t_1 ) omega_2 = omega_02 + alpha_2 * ( t - t_2 ) Dtheta_1 = theta - theta_1 Dtheta_2 = theta - theta_2 Domega_1 = omega_1 - omega_01 Domega_2 = omega_2 - omega_02 theta = theta_1 + omega_01 *( t - t_1 )+ alpha_1 *( t - t_1 )^2/2 theta = theta_2 + omega_02 *( t - t_2 )+ alpha_2 *( t - t_2 )^2/2 Dt_1 = t - t_1 Dt_2 = t - t_2 theta = theta_1 +( omega_1 ^2 - omega_01 ^2)/(2* alpha_1 ) theta = theta_2 +( omega_2 ^2 - omega_02 ^2)/(2* alpha_2 )thetaDtheta_1Dtheta_2alpha_1alpha_2Domega_1Domega_2omega_1omega_2a_1theta_1theta_2omega_01omega_02t_1t_2tra_2Dt_1Dt_2

The definition of average angular acceleration is based on the angle covered

\Delta\omega = \omega - \omega_0



and the elapsed time

\Delta t \equiv t - t_0



The relationship between the two is defined as the average angular acceleration

\bar{\alpha} \equiv \displaystyle\frac{ \Delta\omega }{ \Delta t }

within that time interval.

ID:(3234, 1)



Mean Angular Acceleration (2)

Equation

>Top, >Model


The rate at which angular velocity changes over time is defined as the mean Angular Acceleration (\bar{\alpha}). To measure it, we need to observe the difference in Angular Speeds (\Delta\omega) and the time elapsed (\Delta t).

The equation describing the mean Angular Acceleration (\bar{\alpha}) is as follows:

\alpha_2 \equiv \displaystyle\frac{ \Delta\omega_2 }{ \Delta t_2 }

\bar{\alpha} \equiv \displaystyle\frac{ \Delta\omega }{ \Delta t }

\Delta\omega
\Delta\omega_2
Angular velocity difference of the second body
rad/s
10327
\bar{\alpha}
\alpha_2
Angular acceleration of the second body
rad/s^2
10321
\Delta t
\Delta t_2
Travel time of second object
s
10257
alpha_1 = Domega_1 / Dt_1 alpha_2 = Domega_2 / Dt_2 a_1 = r * alpha_1 a_2 = r * alpha_2 omega_1 = omega_01 + alpha_1 * ( t - t_1 ) omega_2 = omega_02 + alpha_2 * ( t - t_2 ) Dtheta_1 = theta - theta_1 Dtheta_2 = theta - theta_2 Domega_1 = omega_1 - omega_01 Domega_2 = omega_2 - omega_02 theta = theta_1 + omega_01 *( t - t_1 )+ alpha_1 *( t - t_1 )^2/2 theta = theta_2 + omega_02 *( t - t_2 )+ alpha_2 *( t - t_2 )^2/2 Dt_1 = t - t_1 Dt_2 = t - t_2 theta = theta_1 +( omega_1 ^2 - omega_01 ^2)/(2* alpha_1 ) theta = theta_2 +( omega_2 ^2 - omega_02 ^2)/(2* alpha_2 )thetaDtheta_1Dtheta_2alpha_1alpha_2Domega_1Domega_2omega_1omega_2a_1theta_1theta_2omega_01omega_02t_1t_2tra_2Dt_1Dt_2

The definition of average angular acceleration is based on the angle covered

\Delta\omega = \omega - \omega_0



and the elapsed time

\Delta t \equiv t - t_0



The relationship between the two is defined as the average angular acceleration

\bar{\alpha} \equiv \displaystyle\frac{ \Delta\omega }{ \Delta t }

within that time interval.

ID:(3234, 2)



Angular velocity with constant angular acceleration (1)

Equation

>Top, >Model


With the constant Angular Acceleration (\alpha_0), the angular Speed (\omega) forms a linear relationship with the time (t), incorporating the variables the initial Angular Speed (\omega_0) and the start Time (t_0) as follows:

\omega_1 = \omega_{01} + \alpha_1 ( t - t_1 )

\omega = \omega_0 + \alpha_0 ( t - t_0 )

\omega
\omega_1
Final angular velocity of the first body
rad/s
10324
\alpha_0
\alpha_1
Angular acceleration of the first body
rad/s^2
10320
\omega_0
\omega_{01}
Initial angular velocity of the first body
rad/s
10322
t_0
t_1
Initial time of first object
s
10252
t
t
Intersection time
s
10259
alpha_1 = Domega_1 / Dt_1 alpha_2 = Domega_2 / Dt_2 a_1 = r * alpha_1 a_2 = r * alpha_2 omega_1 = omega_01 + alpha_1 * ( t - t_1 ) omega_2 = omega_02 + alpha_2 * ( t - t_2 ) Dtheta_1 = theta - theta_1 Dtheta_2 = theta - theta_2 Domega_1 = omega_1 - omega_01 Domega_2 = omega_2 - omega_02 theta = theta_1 + omega_01 *( t - t_1 )+ alpha_1 *( t - t_1 )^2/2 theta = theta_2 + omega_02 *( t - t_2 )+ alpha_2 *( t - t_2 )^2/2 Dt_1 = t - t_1 Dt_2 = t - t_2 theta = theta_1 +( omega_1 ^2 - omega_01 ^2)/(2* alpha_1 ) theta = theta_2 +( omega_2 ^2 - omega_02 ^2)/(2* alpha_2 )thetaDtheta_1Dtheta_2alpha_1alpha_2Domega_1Domega_2omega_1omega_2a_1theta_1theta_2omega_01omega_02t_1t_2tra_2Dt_1Dt_2

If we assume that the mean Angular Acceleration (\bar{\alpha}) is constant, equivalent to the constant Angular Acceleration (\alpha_0), then the following equation applies:

\bar{\alpha} = \alpha_0



Therefore, considering the difference in Angular Speeds (\Delta\omega) along with the angular Speed (\omega) and the initial Angular Speed (\omega_0):

\Delta\omega = \omega - \omega_0



and the time elapsed (\Delta t) in relation to the time (t) and the start Time (t_0):

\Delta t \equiv t - t_0



the equation for the mean Angular Acceleration (\bar{\alpha}):

\bar{\alpha} \equiv \displaystyle\frac{ \Delta\omega }{ \Delta t }



can be expressed as:

\alpha_0 = \alpha = \displaystyle\frac{\Delta \omega}{\Delta t} = \displaystyle\frac{\omega - \omega_0}{t - t_0}



Solving this, we obtain:

\omega = \omega_0 + \alpha_0 ( t - t_0 )

This equation represents a straight line in the angular velocity versus time plane.

ID:(3237, 1)



Angular velocity with constant angular acceleration (2)

Equation

>Top, >Model


With the constant Angular Acceleration (\alpha_0), the angular Speed (\omega) forms a linear relationship with the time (t), incorporating the variables the initial Angular Speed (\omega_0) and the start Time (t_0) as follows:

\omega_2 = \omega_{02} + \alpha_2 ( t - t_2 )

\omega = \omega_0 + \alpha_0 ( t - t_0 )

\omega
\omega_2
Final angular velocity of the second body
rad/s
10325
\alpha_0
\alpha_2
Angular acceleration of the second body
rad/s^2
10321
\omega_0
\omega_{02}
Initial angular velocity of the second body
rad/s
10323
t_0
t_2
Initial time of second object
s
10253
t
t
Intersection time
s
10259
alpha_1 = Domega_1 / Dt_1 alpha_2 = Domega_2 / Dt_2 a_1 = r * alpha_1 a_2 = r * alpha_2 omega_1 = omega_01 + alpha_1 * ( t - t_1 ) omega_2 = omega_02 + alpha_2 * ( t - t_2 ) Dtheta_1 = theta - theta_1 Dtheta_2 = theta - theta_2 Domega_1 = omega_1 - omega_01 Domega_2 = omega_2 - omega_02 theta = theta_1 + omega_01 *( t - t_1 )+ alpha_1 *( t - t_1 )^2/2 theta = theta_2 + omega_02 *( t - t_2 )+ alpha_2 *( t - t_2 )^2/2 Dt_1 = t - t_1 Dt_2 = t - t_2 theta = theta_1 +( omega_1 ^2 - omega_01 ^2)/(2* alpha_1 ) theta = theta_2 +( omega_2 ^2 - omega_02 ^2)/(2* alpha_2 )thetaDtheta_1Dtheta_2alpha_1alpha_2Domega_1Domega_2omega_1omega_2a_1theta_1theta_2omega_01omega_02t_1t_2tra_2Dt_1Dt_2

If we assume that the mean Angular Acceleration (\bar{\alpha}) is constant, equivalent to the constant Angular Acceleration (\alpha_0), then the following equation applies:

\bar{\alpha} = \alpha_0



Therefore, considering the difference in Angular Speeds (\Delta\omega) along with the angular Speed (\omega) and the initial Angular Speed (\omega_0):

\Delta\omega = \omega - \omega_0



and the time elapsed (\Delta t) in relation to the time (t) and the start Time (t_0):

\Delta t \equiv t - t_0



the equation for the mean Angular Acceleration (\bar{\alpha}):

\bar{\alpha} \equiv \displaystyle\frac{ \Delta\omega }{ \Delta t }



can be expressed as:

\alpha_0 = \alpha = \displaystyle\frac{\Delta \omega}{\Delta t} = \displaystyle\frac{\omega - \omega_0}{t - t_0}



Solving this, we obtain:

\omega = \omega_0 + \alpha_0 ( t - t_0 )

This equation represents a straight line in the angular velocity versus time plane.

ID:(3237, 2)



Angle at Constant Angular Acceleration (1)

Equation

>Top, >Model


Given that the total displacement corresponds to the area under the angular velocity versus time curve, in the case of a constant Angular Acceleration (\alpha_0), it is determined that the displacement the angle (\theta) with the variables the initial Angle (\theta_0), the time (t), the start Time (t_0), and the initial Angular Speed (\omega_0) is as follows:

\theta = \theta_1 + \omega_{01} ( t - t_1 )+\displaystyle\frac{1}{2} \alpha_1 ( t - t_1 )^2

\theta = \theta_0 + \omega_0 ( t - t_0 )+\displaystyle\frac{1}{2} \alpha_0 ( t - t_0 )^2

\theta
\theta
Angle of intersection
rad
10307
\alpha_0
\alpha_1
Angular acceleration of the first body
rad/s^2
10320
\theta_0
\theta_1
Initial angle of the first body
rad
10308
\omega_0
\omega_{01}
Initial angular velocity of the first body
rad/s
10322
t_0
t_1
Initial time of first object
s
10252
t
t
Intersection time
s
10259
alpha_1 = Domega_1 / Dt_1 alpha_2 = Domega_2 / Dt_2 a_1 = r * alpha_1 a_2 = r * alpha_2 omega_1 = omega_01 + alpha_1 * ( t - t_1 ) omega_2 = omega_02 + alpha_2 * ( t - t_2 ) Dtheta_1 = theta - theta_1 Dtheta_2 = theta - theta_2 Domega_1 = omega_1 - omega_01 Domega_2 = omega_2 - omega_02 theta = theta_1 + omega_01 *( t - t_1 )+ alpha_1 *( t - t_1 )^2/2 theta = theta_2 + omega_02 *( t - t_2 )+ alpha_2 *( t - t_2 )^2/2 Dt_1 = t - t_1 Dt_2 = t - t_2 theta = theta_1 +( omega_1 ^2 - omega_01 ^2)/(2* alpha_1 ) theta = theta_2 +( omega_2 ^2 - omega_02 ^2)/(2* alpha_2 )thetaDtheta_1Dtheta_2alpha_1alpha_2Domega_1Domega_2omega_1omega_2a_1theta_1theta_2omega_01omega_02t_1t_2tra_2Dt_1Dt_2

In the case of the constant Angular Acceleration (\alpha_0), the angular Speed (\omega) as a function of the time (t) follows a linear relationship with the start Time (t_0) and the initial Angular Speed (\omega_0) in the form of:

\omega = \omega_0 + \alpha_0 ( t - t_0 )



Given that the angular displacement is equal to the area under the angular velocity-time curve, in this case, one can add the contributions of the rectangle:

\omega_0(t-t_0)



and the triangle:

\displaystyle\frac{1}{2}\alpha_0(t-t_0)^2



This leads us to the expression for the angle (\theta) and the initial Angle (\theta_0):

\theta = \theta_0 + \omega_0 ( t - t_0 )+\displaystyle\frac{1}{2} \alpha_0 ( t - t_0 )^2

This expression corresponds to the general form of a parabola.

ID:(3682, 1)



Angle at Constant Angular Acceleration (2)

Equation

>Top, >Model


Given that the total displacement corresponds to the area under the angular velocity versus time curve, in the case of a constant Angular Acceleration (\alpha_0), it is determined that the displacement the angle (\theta) with the variables the initial Angle (\theta_0), the time (t), the start Time (t_0), and the initial Angular Speed (\omega_0) is as follows:

\theta = \theta_2 + \omega_{02} ( t - t_2 )+\displaystyle\frac{1}{2} \alpha_2 ( t - t_2 )^2

\theta = \theta_0 + \omega_0 ( t - t_0 )+\displaystyle\frac{1}{2} \alpha_0 ( t - t_0 )^2

\theta
\theta
Angle of intersection
rad
10307
\alpha_0
\alpha_2
Angular acceleration of the second body
rad/s^2
10321
\theta_0
\theta_2
Initial angle of the second body
rad
10309
\omega_0
\omega_{02}
Initial angular velocity of the second body
rad/s
10323
t_0
t_2
Initial time of second object
s
10253
t
t
Intersection time
s
10259
alpha_1 = Domega_1 / Dt_1 alpha_2 = Domega_2 / Dt_2 a_1 = r * alpha_1 a_2 = r * alpha_2 omega_1 = omega_01 + alpha_1 * ( t - t_1 ) omega_2 = omega_02 + alpha_2 * ( t - t_2 ) Dtheta_1 = theta - theta_1 Dtheta_2 = theta - theta_2 Domega_1 = omega_1 - omega_01 Domega_2 = omega_2 - omega_02 theta = theta_1 + omega_01 *( t - t_1 )+ alpha_1 *( t - t_1 )^2/2 theta = theta_2 + omega_02 *( t - t_2 )+ alpha_2 *( t - t_2 )^2/2 Dt_1 = t - t_1 Dt_2 = t - t_2 theta = theta_1 +( omega_1 ^2 - omega_01 ^2)/(2* alpha_1 ) theta = theta_2 +( omega_2 ^2 - omega_02 ^2)/(2* alpha_2 )thetaDtheta_1Dtheta_2alpha_1alpha_2Domega_1Domega_2omega_1omega_2a_1theta_1theta_2omega_01omega_02t_1t_2tra_2Dt_1Dt_2

In the case of the constant Angular Acceleration (\alpha_0), the angular Speed (\omega) as a function of the time (t) follows a linear relationship with the start Time (t_0) and the initial Angular Speed (\omega_0) in the form of:

\omega = \omega_0 + \alpha_0 ( t - t_0 )



Given that the angular displacement is equal to the area under the angular velocity-time curve, in this case, one can add the contributions of the rectangle:

\omega_0(t-t_0)



and the triangle:

\displaystyle\frac{1}{2}\alpha_0(t-t_0)^2



This leads us to the expression for the angle (\theta) and the initial Angle (\theta_0):

\theta = \theta_0 + \omega_0 ( t - t_0 )+\displaystyle\frac{1}{2} \alpha_0 ( t - t_0 )^2

This expression corresponds to the general form of a parabola.

ID:(3682, 2)



Braking angle as a function of angular velocity (1)

Equation

>Top, >Model


In the case of the constant Angular Acceleration (\alpha_0), the function of the angular Speed (\omega) with respect to the time (t), along with additional variables the initial Angular Speed (\omega_0) and the start Time (t_0), is expressed by the equation:

\omega = \omega_0 + \alpha_0 ( t - t_0 )



From this equation, it is possible to calculate the relationship between the angle (\theta) and the initial Angle (\theta_0), as well as the change in angular velocity:

\theta = \theta_1 +\displaystyle\frac{ \omega_1 ^2- \omega_{01} ^2}{2 \alpha_1 }

\theta = \theta_0 +\displaystyle\frac{ \omega ^2- \omega_0 ^2}{2 \alpha_0 }

\theta
\theta
Angle of intersection
rad
10307
\omega
\omega_1
Final angular velocity of the first body
rad/s
10324
\alpha_0
\alpha_1
Angular acceleration of the first body
rad/s^2
10320
\theta_0
\theta_1
Initial angle of the first body
rad
10308
\omega_0
\omega_{01}
Initial angular velocity of the first body
rad/s
10322
alpha_1 = Domega_1 / Dt_1 alpha_2 = Domega_2 / Dt_2 a_1 = r * alpha_1 a_2 = r * alpha_2 omega_1 = omega_01 + alpha_1 * ( t - t_1 ) omega_2 = omega_02 + alpha_2 * ( t - t_2 ) Dtheta_1 = theta - theta_1 Dtheta_2 = theta - theta_2 Domega_1 = omega_1 - omega_01 Domega_2 = omega_2 - omega_02 theta = theta_1 + omega_01 *( t - t_1 )+ alpha_1 *( t - t_1 )^2/2 theta = theta_2 + omega_02 *( t - t_2 )+ alpha_2 *( t - t_2 )^2/2 Dt_1 = t - t_1 Dt_2 = t - t_2 theta = theta_1 +( omega_1 ^2 - omega_01 ^2)/(2* alpha_1 ) theta = theta_2 +( omega_2 ^2 - omega_02 ^2)/(2* alpha_2 )thetaDtheta_1Dtheta_2alpha_1alpha_2Domega_1Domega_2omega_1omega_2a_1theta_1theta_2omega_01omega_02t_1t_2tra_2Dt_1Dt_2


If we solve for time in the equation of the angular Speed (\omega) that includes the variables the initial Angular Speed (\omega_0), the time (t), the start Time (t_0), and the constant Angular Acceleration (\alpha_0):

\omega = \omega_0 + \alpha_0 ( t - t_0 )



we obtain the following expression for time:

t - t_0 = \displaystyle\frac{\omega - \omega_0}{\alpha_0}



This solution can be substituted into the equation to calculate the angle (\theta) using the initial Angle (\theta_0) as follows:

\theta = \theta_0 + \omega_0 ( t - t_0 )+\displaystyle\frac{1}{2} \alpha_0 ( t - t_0 )^2



which results in the following equation:

\theta = \theta_0 +\displaystyle\frac{ \omega ^2- \omega_0 ^2}{2 \alpha_0 }

ID:(4386, 1)



Braking angle as a function of angular velocity (2)

Equation

>Top, >Model


In the case of the constant Angular Acceleration (\alpha_0), the function of the angular Speed (\omega) with respect to the time (t), along with additional variables the initial Angular Speed (\omega_0) and the start Time (t_0), is expressed by the equation:

\omega = \omega_0 + \alpha_0 ( t - t_0 )



From this equation, it is possible to calculate the relationship between the angle (\theta) and the initial Angle (\theta_0), as well as the change in angular velocity:

\theta = \theta_2 +\displaystyle\frac{ \omega_2 ^2- \omega_{02} ^2}{2 \alpha_2 }

\theta = \theta_0 +\displaystyle\frac{ \omega ^2- \omega_0 ^2}{2 \alpha_0 }

\theta
\theta
Angle of intersection
rad
10307
\omega
\omega_2
Final angular velocity of the second body
rad/s
10325
\alpha_0
\alpha_2
Angular acceleration of the second body
rad/s^2
10321
\theta_0
\theta_2
Initial angle of the second body
rad
10309
\omega_0
\omega_{02}
Initial angular velocity of the second body
rad/s
10323
alpha_1 = Domega_1 / Dt_1 alpha_2 = Domega_2 / Dt_2 a_1 = r * alpha_1 a_2 = r * alpha_2 omega_1 = omega_01 + alpha_1 * ( t - t_1 ) omega_2 = omega_02 + alpha_2 * ( t - t_2 ) Dtheta_1 = theta - theta_1 Dtheta_2 = theta - theta_2 Domega_1 = omega_1 - omega_01 Domega_2 = omega_2 - omega_02 theta = theta_1 + omega_01 *( t - t_1 )+ alpha_1 *( t - t_1 )^2/2 theta = theta_2 + omega_02 *( t - t_2 )+ alpha_2 *( t - t_2 )^2/2 Dt_1 = t - t_1 Dt_2 = t - t_2 theta = theta_1 +( omega_1 ^2 - omega_01 ^2)/(2* alpha_1 ) theta = theta_2 +( omega_2 ^2 - omega_02 ^2)/(2* alpha_2 )thetaDtheta_1Dtheta_2alpha_1alpha_2Domega_1Domega_2omega_1omega_2a_1theta_1theta_2omega_01omega_02t_1t_2tra_2Dt_1Dt_2


If we solve for time in the equation of the angular Speed (\omega) that includes the variables the initial Angular Speed (\omega_0), the time (t), the start Time (t_0), and the constant Angular Acceleration (\alpha_0):

\omega = \omega_0 + \alpha_0 ( t - t_0 )



we obtain the following expression for time:

t - t_0 = \displaystyle\frac{\omega - \omega_0}{\alpha_0}



This solution can be substituted into the equation to calculate the angle (\theta) using the initial Angle (\theta_0) as follows:

\theta = \theta_0 + \omega_0 ( t - t_0 )+\displaystyle\frac{1}{2} \alpha_0 ( t - t_0 )^2



which results in the following equation:

\theta = \theta_0 +\displaystyle\frac{ \omega ^2- \omega_0 ^2}{2 \alpha_0 }

ID:(4386, 2)



Angle Difference (1)

Equation

>Top, >Model


To describe the rotation of an object, we need to determine the angle variation (\Delta\theta). This is achieved by subtracting the initial Angle (\theta_0) from the angle (\theta), which is reached by the object during its rotation:

\Delta\theta_1 = \theta - \theta_1

\Delta\theta = \theta - \theta_0

\theta
\theta
Angle of intersection
rad
10307
\Delta\theta
\Delta\theta_1
Angle traveled by the first body
rad
10310
\theta_0
\theta_1
Initial angle of the first body
rad
10308
alpha_1 = Domega_1 / Dt_1 alpha_2 = Domega_2 / Dt_2 a_1 = r * alpha_1 a_2 = r * alpha_2 omega_1 = omega_01 + alpha_1 * ( t - t_1 ) omega_2 = omega_02 + alpha_2 * ( t - t_2 ) Dtheta_1 = theta - theta_1 Dtheta_2 = theta - theta_2 Domega_1 = omega_1 - omega_01 Domega_2 = omega_2 - omega_02 theta = theta_1 + omega_01 *( t - t_1 )+ alpha_1 *( t - t_1 )^2/2 theta = theta_2 + omega_02 *( t - t_2 )+ alpha_2 *( t - t_2 )^2/2 Dt_1 = t - t_1 Dt_2 = t - t_2 theta = theta_1 +( omega_1 ^2 - omega_01 ^2)/(2* alpha_1 ) theta = theta_2 +( omega_2 ^2 - omega_02 ^2)/(2* alpha_2 )thetaDtheta_1Dtheta_2alpha_1alpha_2Domega_1Domega_2omega_1omega_2a_1theta_1theta_2omega_01omega_02t_1t_2tra_2Dt_1Dt_2

ID:(3680, 1)



Angle Difference (2)

Equation

>Top, >Model


To describe the rotation of an object, we need to determine the angle variation (\Delta\theta). This is achieved by subtracting the initial Angle (\theta_0) from the angle (\theta), which is reached by the object during its rotation:

\Delta\theta_2 = \theta - \theta_2

\Delta\theta = \theta - \theta_0

\theta
\theta
Angle of intersection
rad
10307
\Delta\theta
\Delta\theta_2
Angle traveled by the second body
rad
10311
\theta_0
\theta_2
Initial angle of the second body
rad
10309
alpha_1 = Domega_1 / Dt_1 alpha_2 = Domega_2 / Dt_2 a_1 = r * alpha_1 a_2 = r * alpha_2 omega_1 = omega_01 + alpha_1 * ( t - t_1 ) omega_2 = omega_02 + alpha_2 * ( t - t_2 ) Dtheta_1 = theta - theta_1 Dtheta_2 = theta - theta_2 Domega_1 = omega_1 - omega_01 Domega_2 = omega_2 - omega_02 theta = theta_1 + omega_01 *( t - t_1 )+ alpha_1 *( t - t_1 )^2/2 theta = theta_2 + omega_02 *( t - t_2 )+ alpha_2 *( t - t_2 )^2/2 Dt_1 = t - t_1 Dt_2 = t - t_2 theta = theta_1 +( omega_1 ^2 - omega_01 ^2)/(2* alpha_1 ) theta = theta_2 +( omega_2 ^2 - omega_02 ^2)/(2* alpha_2 )thetaDtheta_1Dtheta_2alpha_1alpha_2Domega_1Domega_2omega_1omega_2a_1theta_1theta_2omega_01omega_02t_1t_2tra_2Dt_1Dt_2

ID:(3680, 2)



Acceleration and Angular Acceleration (1)

Equation

>Top, >Model


If we divide the relationship between the mean Speed (\bar{v}), the radio (r), and the mean angular velocity (\bar{\omega}), expressed in the following equation:

v = r \omega



by the value of the time elapsed (\Delta t), we can obtain the factor that allows us to calculate the angular acceleration along the orbit:

a_1 = r \alpha_1

a = r \alpha

a
a_1
First body acceleration
m/s^2
10264
\alpha
\alpha_1
Angular acceleration of the first body
rad/s^2
10320
r
Radio
m
9884
alpha_1 = Domega_1 / Dt_1 alpha_2 = Domega_2 / Dt_2 a_1 = r * alpha_1 a_2 = r * alpha_2 omega_1 = omega_01 + alpha_1 * ( t - t_1 ) omega_2 = omega_02 + alpha_2 * ( t - t_2 ) Dtheta_1 = theta - theta_1 Dtheta_2 = theta - theta_2 Domega_1 = omega_1 - omega_01 Domega_2 = omega_2 - omega_02 theta = theta_1 + omega_01 *( t - t_1 )+ alpha_1 *( t - t_1 )^2/2 theta = theta_2 + omega_02 *( t - t_2 )+ alpha_2 *( t - t_2 )^2/2 Dt_1 = t - t_1 Dt_2 = t - t_2 theta = theta_1 +( omega_1 ^2 - omega_01 ^2)/(2* alpha_1 ) theta = theta_2 +( omega_2 ^2 - omega_02 ^2)/(2* alpha_2 )thetaDtheta_1Dtheta_2alpha_1alpha_2Domega_1Domega_2omega_1omega_2a_1theta_1theta_2omega_01omega_02t_1t_2tra_2Dt_1Dt_2

Given that the mean Acceleration (\bar{a}) equals the speed Diference (\Delta v) and the time elapsed (\Delta t) according to

\bar{a} \equiv\displaystyle\frac{ \Delta v }{ \Delta t }



and the mean Angular Acceleration (\bar{\alpha}) equals the difference in Angular Speeds (\Delta\omega) and the time elapsed (\Delta t) as per

\bar{\alpha} \equiv \displaystyle\frac{ \Delta\omega }{ \Delta t }



it follows that

\bar{a}=\displaystyle\frac{\Delta v}{\Delta t}=r\displaystyle\frac{\Delta\omega}{\Delta t}=\bar{\alpha}



Assuming that the mean Angular Acceleration (\bar{\alpha}) is equal to the constant Angular Acceleration (\alpha_0)

\bar{\alpha} = \alpha_0



and assuming that the mean Acceleration (\bar{a}) equals the constant Acceleration (a_0)

a_0 = \bar{a}



then the following equation is obtained:

a = r \alpha

ID:(3236, 1)



Acceleration and Angular Acceleration (2)

Equation

>Top, >Model


If we divide the relationship between the mean Speed (\bar{v}), the radio (r), and the mean angular velocity (\bar{\omega}), expressed in the following equation:

v = r \omega



by the value of the time elapsed (\Delta t), we can obtain the factor that allows us to calculate the angular acceleration along the orbit:

a_2 = r \alpha_2

a = r \alpha

a
a_2
Second body acceleration
m/s^2
10265
\alpha
\alpha_2
Angular acceleration of the second body
rad/s^2
10321
r
Radio
m
9884
alpha_1 = Domega_1 / Dt_1 alpha_2 = Domega_2 / Dt_2 a_1 = r * alpha_1 a_2 = r * alpha_2 omega_1 = omega_01 + alpha_1 * ( t - t_1 ) omega_2 = omega_02 + alpha_2 * ( t - t_2 ) Dtheta_1 = theta - theta_1 Dtheta_2 = theta - theta_2 Domega_1 = omega_1 - omega_01 Domega_2 = omega_2 - omega_02 theta = theta_1 + omega_01 *( t - t_1 )+ alpha_1 *( t - t_1 )^2/2 theta = theta_2 + omega_02 *( t - t_2 )+ alpha_2 *( t - t_2 )^2/2 Dt_1 = t - t_1 Dt_2 = t - t_2 theta = theta_1 +( omega_1 ^2 - omega_01 ^2)/(2* alpha_1 ) theta = theta_2 +( omega_2 ^2 - omega_02 ^2)/(2* alpha_2 )thetaDtheta_1Dtheta_2alpha_1alpha_2Domega_1Domega_2omega_1omega_2a_1theta_1theta_2omega_01omega_02t_1t_2tra_2Dt_1Dt_2

Given that the mean Acceleration (\bar{a}) equals the speed Diference (\Delta v) and the time elapsed (\Delta t) according to

\bar{a} \equiv\displaystyle\frac{ \Delta v }{ \Delta t }



and the mean Angular Acceleration (\bar{\alpha}) equals the difference in Angular Speeds (\Delta\omega) and the time elapsed (\Delta t) as per

\bar{\alpha} \equiv \displaystyle\frac{ \Delta\omega }{ \Delta t }



it follows that

\bar{a}=\displaystyle\frac{\Delta v}{\Delta t}=r\displaystyle\frac{\Delta\omega}{\Delta t}=\bar{\alpha}



Assuming that the mean Angular Acceleration (\bar{\alpha}) is equal to the constant Angular Acceleration (\alpha_0)

\bar{\alpha} = \alpha_0



and assuming that the mean Acceleration (\bar{a}) equals the constant Acceleration (a_0)

a_0 = \bar{a}



then the following equation is obtained:

a = r \alpha

ID:(3236, 2)