Processing math: 0%
Benützer: Keine Benutzer angemeldet.


Druckunterschied

Storyboard

Wenn zwei Säulen aus Flüssigkeit mit unterschiedlichen Höhen miteinander verbunden werden, kann dies einen Druckunterschied erzeugen, der zu einem Fluss von Flüssigkeit von der höheren zur niedrigeren Säule führt. Diese Bewegung setzt sich fort, bis beide Säulen die gleiche Höhe erreichen und somit keinen Druckunterschied mehr aufweisen.

>Modell

ID:(1608, 0)



Mechanismen

Iframe

>Top



Code
Konzept

Mechanismen

ID:(15478, 0)



Anschließen von zwei Flüssigkeitsäulen

Konzept

>Top


Wenn zwei Säulen mit Wasser unterschiedlicher Höhe an ihren Basen verbunden werden, entsteht eine Situation, in der entlang des Verbindungsröhrs ein Druckunterschied herrscht.

Diese Einrichtung ermöglicht es uns, zu studieren, wie der Druckunterschied einen Flüssigkeitsfluss entlang des Rohrs erzeugt. Wir können ein Element der Flüssigkeit mit einer bestimmten Länge und einer Querschnittsfläche, die der des Rohrs entspricht, betrachten und die entsprechende Masse unter Verwendung der Dichte abschätzen. Mit der Querschnittsfläche können wir auch den Druckunterschied in einen Kraftunterschied umrechnen und letztendlich untersuchen, wie Volumina in Flüssigkeiten aufgrund von Druckunterschieden beschleunigt werden.

ID:(933, 0)



Druckunterschied zwischen Säulen

Konzept

>Top


Wenn zwischen zwei Punkten die Druckunterschied (\Delta p) existiert, wie durch die Gleichung bestimmt:

\Delta p = p_2 - p_1



können wir die Druck der Wassersäule (p) verwenden, definiert als:

p_t = p_0 + \rho_w g h



Dies ergibt:

\Delta p=p_2-p_1=p_0+\rho_wh_2g-p_0-\rho_wh_1g=\rho_w(h_2-h_1)g



Da die Höhendifferenz (\Delta h) wie folgt definiert ist:

\Delta h = h_2 - h_1



kann die Druckunterschied (\Delta p) wie folgt ausgedrückt werden:

\Delta p = \rho_w g \Delta h

ID:(15704, 0)



Modell

Top

>Top



Parameter

Symbol
Text
Variable
Wert
Einheiten
Berechnen
MKS-Wert
MKS-Einheiten
\rho_w
rho_w
Flüssigkeitsdichte
kg/m^3
g
g
Gravitationsbeschleunigung
m/s^2
\Delta p
Dp
Variación de la Presión
Pa

Variablen

Symbol
Text
Variable
Wert
Einheiten
Berechnen
MKS-Wert
MKS-Einheiten
p_1
p_1
Druck in Spalte 1
Pa
p_2
p_2
Druck in Spalte 2
Pa
\Delta h
Dh
Höhe der Flüssigkeitssäule
m
h_1
h_1
Höhe oder Tiefe 1
m
h_2
h_2
Höhe oder Tiefe 2
m

Berechnungen


Zuerst die Gleichung auswählen: zu , dann die Variable auswählen: zu
Dh = h_2 - h_1 Dp = p_2 - p_1 Dp = rho_w * g * Dh p_1 = rho_w * g * h_1 p_2 = rho_w * g * h_2 p_1p_2rho_wgDhh_1h_2Dp

Berechnungen

Symbol
Gleichung
Gelöst
Übersetzt

Berechnungen

Symbol
Gleichung
Gelöst
Übersetzt

Variable Gegeben Berechnen Ziel : Gleichung Zu verwenden
Dh = h_2 - h_1 Dp = p_2 - p_1 Dp = rho_w * g * Dh p_1 = rho_w * g * h_1 p_2 = rho_w * g * h_2 p_1p_2rho_wgDhh_1h_2Dp




Gleichungen

#
Gleichung

\Delta h = h_2 - h_1

Dh = h_2 - h_1


\Delta p = p_2 - p_1

Dp = p_2 - p_1


\Delta p = \rho_w g \Delta h

Dp = rho_w * g * Dh


p_1 = \rho_w g h_1

p = rho_w * g * h


p_2 = \rho_w g h_2

p = rho_w * g * h

ID:(15479, 0)



Höhenunterschied

Gleichung

>Top, >Modell


Wenn zwei Flüssigkeitssäulen mit die Höhe der Flüssigkeitssäule 1 (h_1) und die Höhe der Flüssigkeitssäule 2 (h_2) verbunden werden, entsteht eine die Höhendifferenz (\Delta h), die wie folgt berechnet wird:

\Delta h = h_2 - h_1

\Delta h
Höhe der Flüssigkeitssäule
m
5819
h_1
Höhe oder Tiefe 1
m
6259
h_2
Höhe oder Tiefe 2
m
6260
p_1 = rho_w * g * h_1 p_2 = rho_w * g * h_2 Dh = h_2 - h_1 Dp = p_2 - p_1 Dp = rho_w * g * Dh p_1p_2rho_wgDhh_1h_2Dp



die Höhendifferenz (\Delta h) erzeugt den Druckunterschied, der die Flüssigkeit von der höheren Säule zur niedrigeren Säule strömen lässt.

ID:(4251, 0)



Pressure Difference

Gleichung

>Top, >Modell


Wenn zwei Flüssigkeitssäulen mit die Druck in Spalte 1 (p_1) und die Druck in Spalte 2 (p_2) verbunden werden, entsteht eine die Druckunterschied (\Delta p), die nach folgender Formel berechnet wird:

\Delta p = p_2 - p_1

p_1
Druck in Spalte 1
Pa
6261
p_2
Druck in Spalte 2
Pa
6262
\Delta p
Variación de la Presión
Pa
6673
p_1 = rho_w * g * h_1 p_2 = rho_w * g * h_2 Dh = h_2 - h_1 Dp = p_2 - p_1 Dp = rho_w * g * Dh p_1p_2rho_wgDhh_1h_2Dp



die Druckunterschied (\Delta p) repräsentiert den Druckunterschied, der dazu führt, dass die Flüssigkeit von der höheren Säule zur niedrigeren fließt.

ID:(4252, 0)



Säulendruck (1)

Gleichung

>Top, >Modell


Wenn wir den Ausdruck von die Kraft der Säule (F) betrachten und durch die Column Abschnitt (S) teilen, erhalten wir die Druck der Wassersäule (p). Im Laufe dieses Prozesses vereinfachen wir die Column Abschnitt (S), sodass es nicht mehr von diesem abhängig ist. Die resultierende Expression lautet:

p_1 = \rho_w g h_1

p = \rho_w g h

p
p_1
Druck in Spalte 1
Pa
6261
\rho_w
Flüssigkeitsdichte
kg/m^3
5407
g
Gravitationsbeschleunigung
9.8
m/s^2
5310
h
h_1
Höhe oder Tiefe 1
m
6259
p_1 = rho_w * g * h_1 p_2 = rho_w * g * h_2 Dh = h_2 - h_1 Dp = p_2 - p_1 Dp = rho_w * g * Dh p_1p_2rho_wgDhh_1h_2Dp

Da die die Kraft der Säule (F), die von einer Flüssigkeitssäule von die Höhe der Säule (h), die Column Abschnitt (S), die Flüssigkeitsdichte (\rho_w) und die Gravitationsbeschleunigung (g) erzeugt wird, ist

F = S h \rho_w g



und die die Druck der Wassersäule (p) dann definiert ist als

p \equiv\displaystyle\frac{ F }{ S }



haben wir, dass die von einer Flüssigkeitssäule erzeugte die Druck der Wassersäule (p) ist

p = \rho_w g h

ID:(4249, 1)



Säulendruck (2)

Gleichung

>Top, >Modell


Wenn wir den Ausdruck von die Kraft der Säule (F) betrachten und durch die Column Abschnitt (S) teilen, erhalten wir die Druck der Wassersäule (p). Im Laufe dieses Prozesses vereinfachen wir die Column Abschnitt (S), sodass es nicht mehr von diesem abhängig ist. Die resultierende Expression lautet:

p_2 = \rho_w g h_2

p = \rho_w g h

p
p_2
Druck in Spalte 2
Pa
6262
\rho_w
Flüssigkeitsdichte
kg/m^3
5407
g
Gravitationsbeschleunigung
9.8
m/s^2
5310
h
h_2
Höhe oder Tiefe 2
m
6260
p_1 = rho_w * g * h_1 p_2 = rho_w * g * h_2 Dh = h_2 - h_1 Dp = p_2 - p_1 Dp = rho_w * g * Dh p_1p_2rho_wgDhh_1h_2Dp

Da die die Kraft der Säule (F), die von einer Flüssigkeitssäule von die Höhe der Säule (h), die Column Abschnitt (S), die Flüssigkeitsdichte (\rho_w) und die Gravitationsbeschleunigung (g) erzeugt wird, ist

F = S h \rho_w g



und die die Druck der Wassersäule (p) dann definiert ist als

p \equiv\displaystyle\frac{ F }{ S }



haben wir, dass die von einer Flüssigkeitssäule erzeugte die Druck der Wassersäule (p) ist

p = \rho_w g h

ID:(4249, 2)



Druckunterschied zwischen Säulen

Gleichung

>Top, >Modell


Der Höhenunterschied, dargestellt durch die Höhendifferenz (\Delta h), bedeutet, dass der Druck in beiden Säulen unterschiedlich ist. Insbesondere ist die Druckunterschied (\Delta p) eine Funktion von die Flüssigkeitsdichte (\rho_w), die Gravitationsbeschleunigung (g) und die Höhendifferenz (\Delta h), wie folgt:

\Delta p = \rho_w g \Delta h

\rho_w
Flüssigkeitsdichte
kg/m^3
5407
g
Gravitationsbeschleunigung
9.8
m/s^2
5310
\Delta h
Höhe der Flüssigkeitssäule
m
5819
\Delta p
Variación de la Presión
Pa
6673
p_1 = rho_w * g * h_1 p_2 = rho_w * g * h_2 Dh = h_2 - h_1 Dp = p_2 - p_1 Dp = rho_w * g * Dh p_1p_2rho_wgDhh_1h_2Dp

Wenn zwischen zwei Punkten die Druckunterschied (\Delta p) existiert, wie durch die Gleichung bestimmt:

\Delta p = p_2 - p_1



können wir die Druck der Wassersäule (p) verwenden, definiert als:

p_t = p_0 + \rho_w g h



Dies ergibt:

\Delta p=p_2-p_1=p_0+\rho_wh_2g-p_0-\rho_wh_1g=\rho_w(h_2-h_1)g



Da die Höhendifferenz (\Delta h) wie folgt definiert ist:

\Delta h = h_2 - h_1



kann die Druckunterschied (\Delta p) wie folgt ausgedrückt werden:

\Delta p = \rho_w g \Delta h

ID:(4345, 0)