Hydrostatischer Druck
Storyboard
Eine Säule aus Flüssigkeit übt aufgrund ihrer Masse eine Kraft auf ihre Basis aus. Da diese Kraft direkt proportional zur Querschnittsfläche ist, ist es sinnvoll, das Konzept der Kraft pro Flächeneinheit einzuführen, das wir als Druck bezeichnen.
Der Druck kann durch die Bewegung der Flüssigkeit beeinflusst werden, und wir unterscheiden zwischen dem allgemeinen Druck und dem hydrostatischen Druck (hydro = Flüssigkeit, statisch = ohne Bewegung).
ID:(874, 0)
Mechanismen
Iframe
Mechanismen
ID:(15432, 0)
Beschreibung der Wassersäule
Konzept
Um das Verhalten von Flüssigkeiten zu untersuchen, ist es nützlich, das Konzept einer Flüssigkeitssäule einzuführen. Diese Säule ist eine Abstraktion eines zylindrischen Behälters (wie eines Messzylinders), der Flüssigkeit enthält, und ermöglicht es uns, die Kraft zu untersuchen, der ein Objekt darin ausgesetzt ist.
Sobald dieses Konzept eingeführt ist, können wir an seine Existenz unabhängig vom Behälter denken, der sie enthält. Zum Beispiel ist ein Taucher, der im offenen Meer schwimmt, dem Gewicht ausgesetzt, das von einer "imaginären" Flüssigkeitssäule erzeugt wird, die über ihm von der Oberfläche der Flüssigkeit bis zu seiner Haut und der Oberfläche des Meeres reicht.
die Masse der Flüssigkeitssäule ($M$) kann aus die Flüssigkeitsdichte ($\rho_w$) und der Säulenvolumen ($V$) berechnet werden.
Um die Flüssigkeitsdichte ($\rho_w$) zu berechnen, wird die folgende Gleichung verwendet:
$ \rho_w = \displaystyle\frac{ M }{ V }$ |
Und für der Säulenvolumen ($V$) gilt:
$ V = S h $ |
Auf diese Weise wird der Wert von die Masse der Flüssigkeitssäule ($M$) ermittelt durch:
$ M = \rho_w S h $ |
Dies ist gültig, solange die Column Abschnitt ($S$) während die Höhe der Säule ($h$) konstant bleibt.
Der Abschnitt kann sich in seiner Form ändern, aber nicht in seiner Oberfläche.
ID:(2207, 0)
Kraft des Wassers auf den Boden der Säule
Konzept
Sobald das Volumen und somit die Masse der Säule bekannt sind, kann die Kraft berechnet werden, die sie auf ihren Boden ausübt. Es ist wichtig zu beachten, dass dies auf Flüssigkeiten angewendet wird, die als inkompressibel betrachtet werden, was bedeutet, dass die unteren Schichten der Flüssigkeit angenommen werden, nicht durch das Gewicht der oberen Schichten komprimiert zu werden.
Dieses Prinzip kann angewendet werden, um die Kraft zu berechnen, die von jeder Flüssigkeit ausgeübt wird, wie z.B. Wasser oder Öl, und ist besonders nützlich in der Hydraulik und der Strömungsmechanik.
Da die Masse der Flüssigkeitssäule ($M$) gemäß der Gleichung von die Flüssigkeitsdichte ($\rho_w$), die Column Abschnitt ($S$) und die Höhe der Säule ($h$) abhängt:
$ M = \rho_w S h $ |
und die Kraft der Säule ($F$) mit die Gravitationsbeschleunigung ($g$) dargestellt wird:
$ F = M g $ |
kann der Ausdruck wie folgt geschrieben werden:
$ F = S h \rho_w g $ |
.
ID:(2208, 0)
Einführung des Druckbegriffs
Konzept
In der Mechanik beschreiben wir, wie Körper mit definierter Masse sich bewegen. Im Fall einer Flüssigkeit ist die Bewegung nicht gleichmäßig, und jeder Abschnitt der Flüssigkeit bewegt sich unterschiedlich. Diese \\"Abschnitte\\" haben jedoch keine definierte Masse, da sie keine definierten oder getrennten Objekte sind.
Um dieses Problem zu lösen, können wir die Flüssigkeit in eine Reihe von kleinen, getrennten Volumina segmentieren und, falls möglich, ihre Masse mit Hilfe der Dichte schätzen. Auf diese Weise können wir die Idee einführen, dass Kräfte die Bewegung der Flüssigkeit definieren.
Letztendlich sind Volumina jedoch arbiträr, und was letztlich die Bewegung erzeugt, ist die Kraft, die auf die Fläche des Volumens wirkt. Daher macht es mehr Sinn, das Konzept von Kraft der Säule ($F$) pro solchem Column Abschnitt ($S$) einzuführen, das als die Druck der Wassersäule ($p$) bezeichnet wird.
$ p \equiv\displaystyle\frac{ F }{ S }$ |
ID:(46, 0)
Wasserdruck am Boden der Kolonne
Konzept
Die auf den Boden wirkende die Kraft der Säule ($F$) hängt in dem Sinne von die Column Abschnitt ($S$) ab, dass sich die Kraft in derselben Proportion ändert, wenn letzteres variiert. In diesem Sinne sind die Kraft der Säule ($F$) und die Column Abschnitt ($S$) nicht voneinander abhängig; sie verändern sich proportional. Es macht Sinn, diese Proportion als die Druck ($p$) zu definieren:
Da die die Kraft der Säule ($F$), die von einer Flüssigkeitssäule von die Höhe der Säule ($h$), die Column Abschnitt ($S$), die Flüssigkeitsdichte ($\rho_w$) und die Gravitationsbeschleunigung ($g$) erzeugt wird, ist
$ F = S h \rho_w g $ |
und die die Druck der Wassersäule ($p$) dann definiert ist als
$ p \equiv\displaystyle\frac{ F }{ S }$ |
haben wir, dass die von einer Flüssigkeitssäule erzeugte die Druck der Wassersäule ($p$) ist
$ p = \rho_w g h $ |
Dies ist das Gesetz des hydrostatischen Drucks, auch bekannt als Pascalsches Gesetz, das hauptsächlich Blaise Pascal zugeschrieben wird [1].
[1] "Traité de l'équilibre des liqueurs" (Abhandlung über das Gleichgewicht der Flüssigkeiten), Blaise Pascal, 1663.
ID:(2085, 0)
Summe aus der Säulen- und Atmosphärendruck
Konzept
Wenn angenommen wird, dass die Säule von die Atmosphärischer Druck ($p_0$) beeinflusst wird, muss der Beitrag von die Atmosphärischer Druck ($p_0$) zu die Druck der Wassersäule ($p$) der Säule hinzugefügt werden, wie hier gezeigt:
Beim Berechnen von die Druck der Wassersäule ($p$) in einer bestimmten Tiefe ist es wichtig zu berücksichtigen, dass die Oberfläche der Flüssigkeit die Atmosphärischer Druck ($p_0$) ausgesetzt ist, was den Druckwert an dieser Stelle beeinflussen kann. Daher ist es notwendig, die Gleichung für die Druck der Wassersäule ($p$) zu verallgemeinern, um nicht nur die Flüssigkeitssäule die Flüssigkeitsdichte ($\rho_w$), die Höhe der Säule ($h$) und die Gravitationsbeschleunigung ($g$) einzubeziehen, sondern auch die Atmosphärischer Druck ($p_0$):
$ p_t = p_0 + \rho_w g h $ |
Es ist nicht immer notwendig, den Luftdruck in der Modellierung zu berücksichtigen:
In vielen Fällen ist der Luftdruck im gesamten System vorhanden, sodass Druckunterschiede nicht von ihm abhängen.
ID:(2210, 0)
Unabhängigkeit von der Form des Behälters
Konzept
Es ist wichtig zu verstehen, dass der Druck nur von der Tiefe abhängt und es nicht notwendig ist, dass sich direkt über dem Messpunkt eine Flüssigkeitssäule befindet. Dies liegt daran, dass jeder Druckunterschied bei gleicher Tiefe zu einem Fluss führen wird, bis der Druck ausgeglichen ist.
Mit anderen Worten ist der Druck eine skalare Größe, die nur von der vertikalen Entfernung von der Oberfläche der Flüssigkeit bis zum Messpunkt abhängt. Dies wird als hydrostatischer Druck bezeichnet und ist ein grundlegendes Konzept in der Strömungsmechanik, das verwendet wird, um das Verhalten von Flüssigkeiten in verschiedenen Anwendungen, wie zum Beispiel in hydraulischen Systemen und Pipelines, zu verstehen.
ID:(932, 0)
Pascals Paradoxon
Beschreibung
Die Pascal-Paradoxon bezieht sich auf ein Experiment, das von Blaise Pascal, einem französischen Mathematiker und Physiker im 17. Jahrhundert, durchgeführt wurde. In dem Experiment wurde ein hoher Glaszylinder mit Wasser gefüllt und ein langer, schmaler Schlauch wurde durch ein Loch in der Oberseite eingeführt, wodurch das Wasser im Schlauch eingeschlossen wurde. Obwohl der Schlauch dünn und eine geringe Wassermenge hatte, wurde beobachtet, dass der Druck am unteren Ende des Schlauchs dem Druck am unteren Ende des größeren Behälters entsprach.
Ein Beispiel dafür findet sich in dem sogenannten Pascal-Paradoxon, bei dem ein Glasbehälter mit 50 Litern Wasser durch das Einsetzen eines sehr dünnen Rohres von nur 47 Metern, das nur einen Liter Wasser enthält, zerspringt. Eine Demonstration dieses Experiments finden Sie in dem folgenden Video:
ID:(11949, 0)
Modell
Top
Parameter
Variablen
Berechnungen
Berechnungen
Berechnungen
Gleichungen
$ F = S h \rho_w g $
F = S * h * rho_w * g
$ F = M g $
F_g = m_g * g
$ M = \rho_w S h $
M = rho_w * S * h
$ p \equiv\displaystyle\frac{ F }{ S }$
p = F / S
$ p = \rho_w g h $
p = rho_w * g * h
$ p_t = p_0 + \rho_w g h $
p_t = p_0 + rho_w * g * h
$ \rho_w = \displaystyle\frac{ M }{ V }$
rho_w = M / V
$ V = S h $
V = S * h
ID:(15433, 0)
Volumen der Säule
Gleichung
Der Säulenvolumen ($V$) wird durch die Column Abschnitt ($S$) und die Höhe der Säule ($h$) bestimmt und wird wie folgt berechnet:
$ V = S h $ |
ID:(931, 0)
Dichte einer Flüssigkeit
Gleichung
Die die Flüssigkeitsdichte ($\rho_w$) wird aus die Masse der Flüssigkeitssäule ($M$) und der Säulenvolumen ($V$) mithilfe der Gleichung berechnet:
$ \rho_w = \displaystyle\frac{ M }{ V }$ |
ID:(15091, 0)
Wassersäulenmasse
Gleichung
Mit die Flüssigkeitsdichte ($\rho_w$), die Column Abschnitt ($S$) und die Höhe der Säule ($h$) kann man die Masse der Flüssigkeitssäule ($M$) mithilfe der Formel berechnen:
$ M = \rho_w S h $ |
Die Masse der Flüssigkeitssäule ($M$) kann aus die Flüssigkeitsdichte ($\rho_w$) und der Säulenvolumen ($V$) berechnet werden.
Um die Flüssigkeitsdichte ($\rho_w$) zu berechnen, wird die folgende Gleichung verwendet:
$ \rho_w = \displaystyle\frac{ M }{ V }$ |
Und für der Säulenvolumen ($V$) gilt:
$ V = S h $ |
Auf diese Weise wird der Wert von die Masse der Flüssigkeitssäule ($M$) ermittelt durch:
$ M = \rho_w S h $ |
ID:(4340, 0)
Schwerkraft
Gleichung
Die Schwerkraft ($F_g$) basiert auf die Gravitationsmasse ($m_g$) des Objekts und auf einer Konstanten, die die Intensität der Gravitation an der Oberfläche des Planeten widerspiegelt. Letztere wird durch die Gravitationsbeschleunigung ($g$) identifiziert, was $9.8 m/s^2$ entspricht.
Daraus folgt, dass:
$ F = M g $ |
$ F_g = m_g g $ |
ID:(3241, 0)
Kraft der Wassersäule
Gleichung
Die Kraft der Säule ($F$) wird aus die Column Abschnitt ($S$), die Flüssigkeitsdichte ($\rho_w$), die Höhe der Säule ($h$) und die Gravitationsbeschleunigung ($g$) berechnet unter Verwendung von:
$ F = S h \rho_w g $ |
Da die Masse der Flüssigkeitssäule ($M$) gemäß der Gleichung von die Flüssigkeitsdichte ($\rho_w$), die Column Abschnitt ($S$) und die Höhe der Säule ($h$) abhängt:
$ M = \rho_w S h $ |
und die Kraft der Säule ($F$) mit die Gravitationsbeschleunigung ($g$) dargestellt wird:
$ F = M g $ |
kann der Ausdruck wie folgt geschrieben werden:
$ F = S h \rho_w g $ |
.
ID:(4248, 0)
Definition des Drucks
Gleichung
Die Druck der Wassersäule ($p$) wird aus die Kraft der Säule ($F$) und die Column Abschnitt ($S$) wie folgt berechnet:
$ p \equiv\displaystyle\frac{ F }{ S }$ |
ID:(4342, 0)
Säulendruck
Gleichung
Wenn wir den Ausdruck von die Kraft der Säule ($F$) betrachten und durch die Column Abschnitt ($S$) teilen, erhalten wir die Druck der Wassersäule ($p$). Im Laufe dieses Prozesses vereinfachen wir die Column Abschnitt ($S$), sodass es nicht mehr von diesem abhängig ist. Die resultierende Expression lautet:
$ p = \rho_w g h $ |
Da die die Kraft der Säule ($F$), die von einer Flüssigkeitssäule von die Höhe der Säule ($h$), die Column Abschnitt ($S$), die Flüssigkeitsdichte ($\rho_w$) und die Gravitationsbeschleunigung ($g$) erzeugt wird, ist
$ F = S h \rho_w g $ |
und die die Druck der Wassersäule ($p$) dann definiert ist als
$ p \equiv\displaystyle\frac{ F }{ S }$ |
haben wir, dass die von einer Flüssigkeitssäule erzeugte die Druck der Wassersäule ($p$) ist
$ p = \rho_w g h $ |
ID:(4249, 0)
Atmosphärendruck Säulendruck
Gleichung
Die Druck der Wassersäule ($p$) ist mit die Flüssigkeitsdichte ($\rho_w$), die Höhe der Säule ($h$), die Gravitationsbeschleunigung ($g$) und die Atmosphärischer Druck ($p_0$) gleich:
$ p_t = p_0 + \rho_w g h $ |
ID:(4250, 0)