Presión hidrostática
Storyboard
Una columna de líquido ejerce una fuerza sobre su base debido a su masa. Dado que esta fuerza es directamente proporcional a la área transversal, resulta útil introducir el concepto de fuerza por unidad de área, al cual llamamos presión.
La presión puede verse afectada por el movimiento del líquido, y hacemos una distinción entre la presión general y la presión hidrostática (hidro = líquido, estática = sin movimiento).
ID:(874, 0)
Mecanismos
Iframe
Mecanismos
ID:(15432, 0)
Descripción de la columna de agua
Concepto
Para estudiar el comportamiento de los líquidos, es útil introducir el concepto de una columna de líquido. Esta columna es una abstracción de un recipiente cilíndrico (como una probeta) que contiene líquido, y permite estudiar la fuerza a la que un objeto dentro de ella está expuesto.
Una vez que se introduce este concepto, se puede pensar en su existencia independiente del recipiente que la contiene. Por ejemplo, un buzo nadando en alta mar está expuesto al peso que genera una 'columna' imaginaria de líquido que existe sobre él, desde la superficie del líquido hasta su piel y la superficie del mar.
la masa de la columna de líquido ($M$) se puede calcular a partir de la densidad del líquido ($\rho_w$) y el volumen de la columna ($V$).
Para calcular la densidad del líquido ($\rho_w$), se utiliza la siguiente ecuación:
$ \rho_w = \displaystyle\frac{ M }{ V }$ |
Y para el volumen de la columna ($V$), se aplica la ecuación:
$ V = S h $ |
De esta manera, se obtiene el valor de la masa de la columna de líquido ($M$) mediante:
$ M = \rho_w S h $ |
Esto es válido siempre y cuando la sección de la columna ($S$) se mantenga constante a lo largo de la altura de la columna ($h$).
La sección puede cambiar en su forma, pero no en su superficie.
ID:(2207, 0)
Fuerza del agua sobre el fondo de la columna
Concepto
Una vez que se conoce el volumen y, por lo tanto, la masa de la columna de líquido, se puede calcular la fuerza que esta ejerce sobre su base. Es importante tener en cuenta que esto se aplica a líquidos que se consideran incompresibles, lo que significa que se supone que las capas inferiores del líquido no se comprimen debido al peso de las capas superiores.
Este principio se puede aplicar para calcular la fuerza ejercida por cualquier líquido, como agua o aceite, y es particularmente útil en ingeniería hidráulica y mecánica de fluidos.
Dado que la masa de la columna de líquido ($M$) depende de la densidad del líquido ($\rho_w$), la sección de la columna ($S$) y la altura de la columna ($h$) de acuerdo con la ecuación:
$ M = \rho_w S h $ |
y la fuerza de la columna ($F$) está representada con la aceleración gravitacional ($g$) por:
$ F = M g $ |
entonces, la expresión se puede escribir de la siguiente manera:
$ F = S h \rho_w g $ |
.
ID:(2208, 0)
Introducción del concepto de presión
Concepto
En mecánica, se describe cómo se desplazan los cuerpos con masa definida. En el caso de un líquido, su movimiento no es uniforme, cada sector se desplaza de manera distinta. Sin embargo, estos "sectores" no tienen una masa definida ya que no son objetos definidos ni separados.
Para resolver esta problemática, se puede segmentar el líquido en una serie de pequeños volúmenes separados y, si es posible, estimar su masa mediante la densidad. De esta manera, se puede introducir la idea de que existen fuerzas que definen el movimiento del líquido.
Sin embargo, en última instancia, los volúmenes son arbitrarios y lo que acaba generando el movimiento es la fuerza que actúa en la cara del volumen. Por lo tanto, tiene más sentido introducir el concepto de fuerza de la columna ($F$) por dicha sección de la columna ($S$), que se llama la presión de la columna de agua ($p$).
$ p \equiv\displaystyle\frac{ F }{ S }$ |
ID:(46, 0)
Presión del agua sobre el fondo de la columna
Concepto
La la fuerza de la columna ($F$) que actúa sobre el fondo depende de la sección de la columna ($S$) en el sentido de que si esta última varía, la fuerza lo hará en la misma proporción. En este sentido, la fuerza de la columna ($F$) y la sección de la columna ($S$) no están vinculados de manera dependiente, varían proporcionalmente, por lo que tiene sentido definir esta proporción como la presión ($p$):
Como la la fuerza de la columna ($F$) generada por una columna de liquido de la altura de la columna ($h$), la sección de la columna ($S$), la densidad del líquido ($\rho_w$) y la aceleración gravitacional ($g$) es
$ F = S h \rho_w g $ |
y la la presión de la columna de agua ($p$) se define entonces como
$ p \equiv\displaystyle\frac{ F }{ S }$ |
se tiene que la la presión de la columna de agua ($p$) generada por una columna de liquido es
$ p = \rho_w g h $ |
Esta es la ley de presión hidrostática, también conocida como ley de Pascal, atribuida principalmente a Blaise Pascal [1].
[1] "Traité de l'équilibre des liqueurs" (Tratado sobre el equilibrio de los líquidos), Blaise Pascal, 1663.
ID:(2085, 0)
Suma de la presión de columna y atmósfera
Concepto
Si se considera que la columna está bajo la influencia de la presión atmosférica ($p_0$), entonces se debe sumar a la presión de la columna de agua ($p$) de la columna la contribución de esta:
Cuando calculamos la presión de la columna de agua ($p$) a cierta profundidad, es fundamental tener en cuenta que la superficie del líquido está expuesta a la presión atmosférica ($p_0$), lo que puede afectar el valor de la presión en ese punto. Por lo tanto, es necesario generalizar la ecuación de la presión de la columna de agua ($p$) para que incluya no solo la columna de líquido la densidad del líquido ($\rho_w$), la altura de la columna ($h$), y la aceleración gravitacional ($g$), sino también la presión atmosférica ($p_0$):
$ p_t = p_0 + \rho_w g h $ |
No siempre es necesario tener en cuenta la presión atmosférica en la modelación:
En muchos casos, la presión atmosférica está presente en todo el sistema, por lo que las diferencias de presión no dependen de ella.
ID:(2210, 0)
Independencia de la forma del envase
Concepto
Es importante comprender que la presión depende únicamente de la profundidad y no es necesario que exista una columna de líquido directamente encima del punto en que se mide la presión. Esto se debe a que cualquier diferencia de presión a la misma profundidad provocará un flujo hasta que la presión sea uniforme.
En otras palabras, la presión es una magnitud escalar que solo depende de la distancia vertical desde la superficie del líquido hasta el punto de medición. Esto se conoce como presión hidrostática, que es un concepto fundamental en la mecánica de fluidos y se utiliza para comprender el comportamiento de los fluidos en diversas aplicaciones, como en sistemas hidráulicos y tuberías.
ID:(932, 0)
Paradoja de Pascal
Descripción
La paradoja de Pascal se refiere a un experimento realizado por Blaise Pascal, un matemático y físico francés del siglo XVII. En el experimento, se llenó un tubo de vidrio alto con agua y se insertó un tubo largo y estrecho a través de un agujero en la parte superior, lo que permitió que el agua quedara atrapada dentro del tubo. A pesar de que el tubo era delgado y tenía una pequeña cantidad de agua, se observó que la presión en la parte inferior del tubo era igual a la presión en la parte inferior del recipiente más grande.
Un ejemplo de esto se ve en la llamada paradoja de Pascal, en la que una jarra de vidrio con 50 litros de agua explota al colocar un tubito muy delgado de solo 47 metros que contiene solo un litro de agua. Puede ver una demostración de este experimento en el siguiente video:
ID:(11949, 0)
Modelo
Top
Parámetros
Variables
Cálculos
Cálculos
Cálculos
Ecuaciones
$ F = S h \rho_w g $
F = S * h * rho_w * g
$ F = M g $
F_g = m_g * g
$ M = \rho_w S h $
M = rho_w * S * h
$ p \equiv\displaystyle\frac{ F }{ S }$
p = F / S
$ p = \rho_w g h $
p = rho_w * g * h
$ p_t = p_0 + \rho_w g h $
p_t = p_0 + rho_w * g * h
$ \rho_w = \displaystyle\frac{ M }{ V }$
rho_w = M / V
$ V = S h $
V = S * h
ID:(15433, 0)
Volumen de la columna
Ecuación
El volumen de la columna ($V$) se determina a partir de la sección de la columna ($S$) y la altura de la columna ($h$) y su cálculo se realiza mediante:
$ V = S h $ |
ID:(931, 0)
Densidad de un líquido
Ecuación
La la densidad del líquido ($\rho_w$) se calcula a partir de la masa de la columna de líquido ($M$) y el volumen de la columna ($V$) utilizando la ecuación:
$ \rho_w = \displaystyle\frac{ M }{ V }$ |
ID:(15091, 0)
Masa columna de agua
Ecuación
Utilizando la densidad del líquido ($\rho_w$), la sección de la columna ($S$), y la altura de la columna ($h$), se puede calcular la masa de la columna de líquido ($M$) mediante la fórmula:
$ M = \rho_w S h $ |
La masa de la columna de líquido ($M$) se puede calcular a partir de la densidad del líquido ($\rho_w$) y el volumen de la columna ($V$).
Para calcular la densidad del líquido ($\rho_w$), se utiliza la siguiente ecuación:
$ \rho_w = \displaystyle\frac{ M }{ V }$ |
Y para el volumen de la columna ($V$), se aplica la ecuación:
$ V = S h $ |
De esta manera, se obtiene el valor de la masa de la columna de líquido ($M$) mediante:
$ M = \rho_w S h $ |
ID:(4340, 0)
Fuerza gravitacional
Ecuación
La fuerza gravitacional ($F_g$) se basa en la masa gravitacional ($m_g$) del objeto y en una constante que refleja la intensidad de la gravedad en la superficie del planeta. Esta última es identificada por la aceleración gravitacional ($g$), que es igual a $9.8 m/s^2$.
En consecuencia, se concluye que:
$ F = M g $ |
$ F_g = m_g g $ |
ID:(3241, 0)
Fuerza de columna de agua
Ecuación
La fuerza de la columna ($F$) se calcula de la sección de la columna ($S$), la densidad del líquido ($\rho_w$), la altura de la columna ($h$) y la aceleración gravitacional ($g$) mediante:
$ F = S h \rho_w g $ |
Dado que la masa de la columna de líquido ($M$) depende de la densidad del líquido ($\rho_w$), la sección de la columna ($S$) y la altura de la columna ($h$) de acuerdo con la ecuación:
$ M = \rho_w S h $ |
y la fuerza de la columna ($F$) está representada con la aceleración gravitacional ($g$) por:
$ F = M g $ |
entonces, la expresión se puede escribir de la siguiente manera:
$ F = S h \rho_w g $ |
.
ID:(4248, 0)
Definición de la presión
Ecuación
La presión de la columna de agua ($p$) se calcula a partir de la fuerza de la columna ($F$) y la sección de la columna ($S$) de la siguiente manera:
$ p \equiv\displaystyle\frac{ F }{ S }$ |
ID:(4342, 0)
Presión de columna
Ecuación
Si consideramos la expresión de la fuerza de la columna ($F$) y la dividimos por la sección de la columna ($S$), obtenemos la presión de la columna de agua ($p$). Durante este proceso, simplificamos la sección de la columna ($S$), por lo que ya no depende de esta. La expresión resultante es la siguiente:
$ p = \rho_w g h $ |
Como la la fuerza de la columna ($F$) generada por una columna de liquido de la altura de la columna ($h$), la sección de la columna ($S$), la densidad del líquido ($\rho_w$) y la aceleración gravitacional ($g$) es
$ F = S h \rho_w g $ |
y la la presión de la columna de agua ($p$) se define entonces como
$ p \equiv\displaystyle\frac{ F }{ S }$ |
se tiene que la la presión de la columna de agua ($p$) generada por una columna de liquido es
$ p = \rho_w g h $ |
ID:(4249, 0)
Presión de columna con presión atmosférica
Ecuación
La presión de la columna de agua ($p$) es con la densidad del líquido ($\rho_w$), la altura de la columna ($h$), la aceleración gravitacional ($g$) y la presión atmosférica ($p_0$) igual a:
$ p_t = p_0 + \rho_w g h $ |
ID:(4250, 0)