Particles in Magnetic Fields

Storyboard

Electric charges moving in a magnetic field are deflected perpendicular to the direction in which they move and in which the magnetic field points.

The force acting on the particle depends on the charge, the velocity and the magnetic field is called the Lorentz force.

>Model

ID:(818, 0)



Magnitude of the magnetic component of the Lorentz force

Equation

>Top, >Model


The force ($F$), which generates the magnetic flux density ($B$) on the charge ($q$), moving under a angle between speed and magnetic field ($\theta$) with the speed ($v$), is expressed as:

$ F = q v B \sin \theta $

$\theta$
Angle between speed and magnetic field
$rad$
5513
$q$
Charge
$C$
5460
$F$
Force
$N$
4975
$B$
Magnetic flux density
$kg/C s$
5512
$v$
$v$
Particle speed
$m/s$
8630

ID:(3873, 0)



Circular motion in magnetic field

Equation

>Top, >Model


La ecuación de movimiento se deriva del equilibrio entre la fuerza generada por the magnetic flux density ($B$) actuando sobre the charge ($q$) y the particle mass ($m$), que se desplaza con the particle speed ($v$) a the radius ($r$). Esto se expresa mediante la siguiente relación:

$ m \displaystyle\frac{ v ^2}{ r }= q v B $

$q$
Charge
$C$
5460
$B$
Magnetic flux density
$kg/C s$
5512
$m$
Particle mass
$kg$
5516
$v$
Particle speed
$m/s$
8630
$r$
$r$
Radius of gyration of particle in magnetic field
$m$
5514

ID:(3229, 0)



Radius of the orbit in the magnetic field

Equation

>Top, >Model


The orbit at a radius of gyration of particle in magnetic field ($r$) depends on the particle mass ($m$), the speed ($v$), the charge ($Q$), and the magnetic flux density ($B$), and is described by the following relationship:

$ r =\displaystyle\frac{ m v }{ q B }$

$q$
Charge
$C$
5460
$B$
Magnetic flux density
$kg/C s$
5512
$m$
Particle mass
$kg$
5516
$r$
Radius of gyration of particle in magnetic field
$m$
5514
$v$
$v$
Particle speed
$m/s$
8630

None

ID:(3874, 0)



Cyclotron frequency

Equation

>Top, >Model


The angular Speed ($\omega$) is derived from the charge ($q$), the magnetic flux density ($B$), and the particle mass ($m$), using the following relationship:

$ \omega =\displaystyle\frac{ q B }{ m }$

$\omega$
Angular Speed
$rad/s$
6068
$q$
Charge
$C$
5460
$B$
Magnetic flux density
$kg/C s$
5512
$m$
Particle mass
$kg$
5516

None

ID:(10058, 0)



0
Video

Video: Particle dynamics