Loading web-font TeX/Math/Italic
User: No user logged in.


Force of gravity and tides in conjunction

Storyboard

Gravity and centrifugal acceleration generate tides, the movement of oceans that raises and lowers their level with a frequency of 12 hours. Their origin can be generated by both the moon and the sun.

>Model

ID:(1523, 0)



Mechanisms

Iframe

>Top



Code
Concept

Mechanisms

ID:(15439, 0)



Variation of gravity perpendicular to the radius, in conjunction

Image

>Top


There is a contribution from the gravitational attraction of the celestial body that pulls water towards the equatorial region:



The hypotenuse of the triangle is related to the vertical leg by:

R\sin\theta



and the horizontal leg by:

d - R\cos\theta



Using the Pythagorean theorem, we have:

R^2\sin^2\theta+(d-R\cos\theta)^2=d^2+R^2-2Rd\cos\theta

ID:(11635, 0)



Variation of gravity parallel to the radius, in conjunction

Image

>Top


There is a contribution from the gravitational attraction of the celestial body that pulls water towards the radius, which tends to displace the water towards the equatorial zone:



The hypotenuse of the triangle is formed by the vertical leg:

R\sin\theta



and the horizontal leg:

d - R\cos\theta



According to the Pythagorean theorem, we have:

R^2\sin^2\theta+(d-R\cos\theta)^2=d^2+R^2-2Rd\cos\theta

ID:(11658, 0)



Model

Top

>Top



Parameters

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
a_c
a_c
Acceleration generated by the celestial body, en conjunction
m/s^2
\Delta a_{cx}
Da_cx
Acceleration variation parallel to the ecliptic, in conyunction
m/s^2
\Delta a_{cy}
Da_cy
Acceleration variation perpendicular to the ecliptic
m/s^2
\theta
theta
Angle from the planet line - celestial object
rad
d
d
Celestial object planet distance
m
M
M
Masa del cuerpo que genera la marea
kg
R
R
Planet radio
m
G
G
Universal Gravitation Constant
m^3/kg s^2

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units

Calculations


First, select the equation: to , then, select the variable: to
a_c = G * M /( d ^2+ R ^2-2* d * R *cos( theta )) Da_cx / a_c = ( d - R * cos( theta ))/sqrt( d ^2 + R ^2 - 2 * d * R * cos( theta )) Da_cx = G * M *(1 + 2* R * cos( theta )/ d )/ d ^2 Da_cy / a_c = R * sin( theta ) / sqrt( d ^2 + R ^2 - 2 * d * R * cos( theta )) Da_cy = G * M * R * sin( theta )/ d ^3 a_cDa_cxDa_cythetadMRG

Calculations

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

Variable Given Calculate Target : Equation To be used
a_c = G * M /( d ^2+ R ^2-2* d * R *cos( theta )) Da_cx / a_c = ( d - R * cos( theta ))/sqrt( d ^2 + R ^2 - 2 * d * R * cos( theta )) Da_cx = G * M *(1 + 2* R * cos( theta )/ d )/ d ^2 Da_cy / a_c = R * sin( theta ) / sqrt( d ^2 + R ^2 - 2 * d * R * cos( theta )) Da_cy = G * M * R * sin( theta )/ d ^3 a_cDa_cxDa_cythetadMRG




Equations

#
Equation

a_c = \displaystyle\frac{ G M }{ d ^2+ R ^2-2 d R \cos \theta }

a_c = G * M /( d ^2+ R ^2-2* d * R *cos( theta ))


\displaystyle\frac{ \Delta a_{cx} }{ a_c } =\displaystyle\frac{ d - R\cos\theta }{ \sqrt{ d ^2+ R ^2-2 d R \cos \theta } }

Da_cx / a_c = ( d - R * cos( theta ))/sqrt( d ^2 + R ^2 - 2 * d * R * cos( theta ))


\Delta a_{cx} = \displaystyle\frac{ G M }{ d ^2}\left(1+\displaystyle\frac{2 R \cos \theta }{ d }\right)

Da_cx = G * M *(1 + 2* R * cos( theta )/ d )/ d ^2


\displaystyle\frac{ \Delta a_{cy} }{ a_c } =\displaystyle\frac{ R\sin\theta }{ \sqrt{ d ^2+ R ^2-2 d R \cos \theta } }

Da_cy / a_c = R * sin( theta ) / sqrt( d ^2 + R ^2 - 2 * d * R * cos( theta ))


\Delta a_{cy} = \displaystyle\frac{ G M }{ d ^2 }\displaystyle\frac{ R \sin \theta }{ d }

Da_cy = G * M * R * sin( theta )/ d ^3

ID:(15434, 0)



Variation of acceleration perpendicular to the radius, in conjunction

Equation

>Top, >Model


To determine the variation of the acceleration perpendicular to the radius, we can use triangle similarity to equate the relation

\displaystyle\frac{\Delta a_{cy}}{a_c}



with the length

d-R\cos\theta



and the hypotenuse

\sqrt{d^2+R^2-2dR\cos\theta}

.

By triangle similarity, we have with that

\displaystyle\frac{ \Delta a_{cy} }{ a_c } =\displaystyle\frac{ R\sin\theta }{ \sqrt{ d ^2+ R ^2-2 d R \cos \theta } }

a_c
Acceleration generated by the celestial body, en conjunction
m/s^2
8572
\Delta a_{cy}
Acceleration variation perpendicular to the ecliptic
m/s^2
8576
\theta
Angle from the planet line - celestial object
rad
8569
d
Celestial object planet distance
m
8567
R
Planet radio
m
8566
Da_cy / a_c = R * sin( theta ) / sqrt( d ^2 + R ^2 - 2 * d * R * cos( theta )) a_c = G * M /( d ^2+ R ^2-2* d * R *cos( theta )) Da_cy = G * M * R * sin( theta )/ d ^3 Da_cx / a_c = ( d - R * cos( theta ))/sqrt( d ^2 + R ^2 - 2 * d * R * cos( theta )) Da_cx = G * M *(1 + 2* R * cos( theta )/ d )/ d ^2 a_cDa_cxDa_cythetadMRG

.

ID:(11643, 0)



Acceleration perpendicular to the radius, in conjunction

Equation

>Top, >Model


Con la ley de la gravitación de Newton, con , es:

F = G \displaystyle\frac{ m_g M }{ r ^2}



Se puede, con la definición de la fuerza, con :

F = m_i a



Y el radio al cuadrado:

r^2=d^2+R^2-2dR\cos\theta



Calcular la aceleración reemplazando el radio en la fuerza y despejando la aceleración. Esto da con la aceleración:

a_c = \displaystyle\frac{ G M }{ d ^2+ R ^2-2 d R \cos \theta }

a_c
Acceleration generated by the celestial body, en conjunction
m/s^2
8572
\theta
Angle from the planet line - celestial object
rad
8569
d
Celestial object planet distance
m
8567
M
Masa del cuerpo que genera la marea
kg
8568
R
Planet radio
m
8566
G
Universal Gravitation Constant
m^3/kg s^2
8564
Da_cy / a_c = R * sin( theta ) / sqrt( d ^2 + R ^2 - 2 * d * R * cos( theta )) a_c = G * M /( d ^2+ R ^2-2* d * R *cos( theta )) Da_cy = G * M * R * sin( theta )/ d ^3 Da_cx / a_c = ( d - R * cos( theta ))/sqrt( d ^2 + R ^2 - 2 * d * R * cos( theta )) Da_cx = G * M *(1 + 2* R * cos( theta )/ d )/ d ^2 a_cDa_cxDa_cythetadMRG

ID:(11644, 0)



Acceleration approximation perpendicular to the radius, in conjunction

Equation

>Top, >Model


With acceleration generated by the celestial body, en conjunction m/s^2, acceleration variation perpendicular to the ecliptic m/s^2, angle from the planet line - celestial object rad, celestial object planet distance m and planet radio m, the relationship between the variation of acceleration and acceleration is:

\displaystyle\frac{ \Delta a_{cy} }{ a_c } =\displaystyle\frac{ R\sin\theta }{ \sqrt{ d ^2+ R ^2-2 d R \cos \theta } }



And since the expression for acceleration is with acceleration generated by the celestial body, en conjunction m/s^2, angle from the planet line - celestial object rad, celestial object planet distance m, masa del cuerpo que genera la marea kg, planet radio m and universal Gravitation Constant m^3/kg s^2:

a_c = \displaystyle\frac{ G M }{ d ^2+ R ^2-2 d R \cos \theta }



It follows that:

\Delta a_{cy} = GM\displaystyle\frac{R\sin\theta}{(d^2 + R^2 - 2dR\cos\theta)^{3/2}}\sim \displaystyle\frac{GM}{d^2}\displaystyle\frac{R\sin\theta}{d}



Therefore, in the approximation d\gg R, we can approximate with by:

\Delta a_{cy} = \displaystyle\frac{ G M }{ d ^2 }\displaystyle\frac{ R \sin \theta }{ d }

\Delta a_{cy}
Acceleration variation perpendicular to the ecliptic
m/s^2
8576
\theta
Angle from the planet line - celestial object
rad
8569
d
Celestial object planet distance
m
8567
M
Masa del cuerpo que genera la marea
kg
8568
R
Planet radio
m
8566
G
Universal Gravitation Constant
m^3/kg s^2
8564
Da_cy / a_c = R * sin( theta ) / sqrt( d ^2 + R ^2 - 2 * d * R * cos( theta )) a_c = G * M /( d ^2+ R ^2-2* d * R *cos( theta )) Da_cy = G * M * R * sin( theta )/ d ^3 Da_cx / a_c = ( d - R * cos( theta ))/sqrt( d ^2 + R ^2 - 2 * d * R * cos( theta )) Da_cx = G * M *(1 + 2* R * cos( theta )/ d )/ d ^2 a_cDa_cxDa_cythetadMRG

ID:(11645, 0)



Acceleration variation parallel to the radius, in conjunction

Equation

>Top, >Model


To determine the variation of the acceleration parallel to the radius, we can use triangle similarity to equate the relation

\displaystyle\frac{\Delta a_{cx}}{a_c}



with the length

d+R\cos\theta



and the hypotenuse

\sqrt{d^2+R^2-2dR\cos\theta}



By triangle similarity, we have with that

\displaystyle\frac{ \Delta a_{cx} }{ a_c } =\displaystyle\frac{ d - R\cos\theta }{ \sqrt{ d ^2+ R ^2-2 d R \cos \theta } }

a_c
Acceleration generated by the celestial body, en conjunction
m/s^2
8572
\Delta a_{cx}
Acceleration variation parallel to the ecliptic, in conyunction
m/s^2
8575
\theta
Angle from the planet line - celestial object
rad
8569
d
Celestial object planet distance
m
8567
R
Planet radio
m
8566
Da_cy / a_c = R * sin( theta ) / sqrt( d ^2 + R ^2 - 2 * d * R * cos( theta )) a_c = G * M /( d ^2+ R ^2-2* d * R *cos( theta )) Da_cy = G * M * R * sin( theta )/ d ^3 Da_cx / a_c = ( d - R * cos( theta ))/sqrt( d ^2 + R ^2 - 2 * d * R * cos( theta )) Da_cx = G * M *(1 + 2* R * cos( theta )/ d )/ d ^2 a_cDa_cxDa_cythetadMRG

ID:(11647, 0)



Approach acceleration parallel to the radius, in conjunction

Equation

>Top, >Model


With acceleration generated by the celestial body, en conjunction m/s^2, acceleration variation parallel to the ecliptic, in conyunction m/s^2, angle from the planet line - celestial object rad, celestial object planet distance m and planet radio m, the relationship is:

\displaystyle\frac{ \Delta a_{cx} }{ a_c } =\displaystyle\frac{ d - R\cos\theta }{ \sqrt{ d ^2+ R ^2-2 d R \cos \theta } }



And as for acceleration generated by the celestial body, en conjunction m/s^2, angle from the planet line - celestial object rad, celestial object planet distance m, masa del cuerpo que genera la marea kg, planet radio m and universal Gravitation Constant m^3/kg s^2,

a_c = \displaystyle\frac{ G M }{ d ^2+ R ^2-2 d R \cos \theta }



Thus, we have:

\Delta a_{cx} =GM\displaystyle\frac{d - R\cos\theta}{(d^2 + R^2 - 2dR\cos\theta)^{3/2}}\sim \displaystyle\frac{GM}{d^2}\left(1+\displaystyle\frac{2R\cos\theta}{d}\right)



Therefore, in the approximation d\gg R, we can approximate with by:

\Delta a_{cx} = \displaystyle\frac{ G M }{ d ^2}\left(1+\displaystyle\frac{2 R \cos \theta }{ d }\right)

\Delta a_{cx}
Acceleration variation parallel to the ecliptic, in conyunction
m/s^2
8575
\theta
Angle from the planet line - celestial object
rad
8569
d
Celestial object planet distance
m
8567
M
Masa del cuerpo que genera la marea
kg
8568
R
Planet radio
m
8566
G
Universal Gravitation Constant
m^3/kg s^2
8564
Da_cy / a_c = R * sin( theta ) / sqrt( d ^2 + R ^2 - 2 * d * R * cos( theta )) a_c = G * M /( d ^2+ R ^2-2* d * R *cos( theta )) Da_cy = G * M * R * sin( theta )/ d ^3 Da_cx / a_c = ( d - R * cos( theta ))/sqrt( d ^2 + R ^2 - 2 * d * R * cos( theta )) Da_cx = G * M *(1 + 2* R * cos( theta )/ d )/ d ^2 a_cDa_cxDa_cythetadMRG

ID:(11650, 0)