Loading web-font TeX/Math/Italic
User: No user logged in.


Sonar

Storyboard

Another use of sound in water is sonar, employed both as a technological tool and as a technique used by whales and dolphins (biosonar) to determine distances.

Biosonar is used for navigation and hunting, estimating distances and even velocities to predict the future movement of prey.

>Model

ID:(1597, 0)



Mechanisms

Iframe

>Top



Code
Concept

Mechanisms

ID:(15468, 0)



Sonar principle

Image

>Top


The principle of sonar is the emission of sound that is then reflected in the object to be studied and is finally captured by the emitter. The distance of the sound wave is determined from the travel time of the sound wave and the speed in the medium.

There are three situations of interest:

• Emitter and reflector are at rest

• Emitter in motion and reflector at rest

• Emitter and reflector at rest

ID:(11869, 0)



Emitter and reflector are at rest

Concept

>Top


In the case where both the transmitter and the reflector remain stationary, the path traveled by the sound is equal to twice the emitter and reflector distance are at rest (d):



Since the distance is covered at the speed of sound (c) in the echo time (\tau_1), we have that the emitter and reflector distance are at rest (d) is:

d = \displaystyle\frac{1}{2} c \tau_1

ID:(11870, 0)



Emitter in motion and reflector at rest

Concept

>Top


In the case where the transmitter moves at a velocity the emitter speed (v_e) and the reflector is at rest, the reflector starting distance (d_0) varies depending on whether the sound traveling at the speed of sound (c) requires the echo time (\tau_1) to be greater (if the bodies move apart) or smaller (if the bodies move closer):



Therefore, the reflector starting distance (d_0) is equal to

d_0 = \displaystyle\frac{1}{2} (c + v_e) \tau_1



and the position of the reflector relative to the transmitter is

x = \displaystyle\frac{1}{2}( c + v_e ) \tau_1 - v_e t



as a function of the time from start of trace (t).

ID:(11871, 0)



Emitter and reflector in motion

Concept

>Top


In the case where the emitter moves at a speed of the emitter speed (v_e) and the reflector moves at a speed of the reflector or receiver speed (v_o), the distance between the emitter and the reflector can be either greater (v_e > v_o) or smaller (v_e < v_o). If we represent this situation including the echo time (\tau_1), the second echo time (\tau_2), and the time between pulses (\tau), we obtain:



By calculating the distance traveled and the time elapsed by the reflector between both pulses, we obtain the reflector or receiver speed (v_o) as follows:

v_o = \displaystyle\frac{2 v_e \tau + ( c + v_e )( \tau_2 - \tau_1 )}{2 c \tau + ( c + v_e )( \tau_2 - \tau_1 )}c



Knowing both the emitter speed (v_e) and the reflector or receiver speed (v_o), we can express the relative position emitter in motion and reflector at rest (x) in terms of the time from start of trace (t) as follows:

x =\displaystyle\frac{(2 \tau \tau_1 +( \tau_2 - \tau_1 ) t )( c - v_e )( v_e + c )}{( v_e + c )( \tau_2 - \tau_1 )+2 c \tau )}



with the speed of sound (c).

ID:(11872, 0)



Model

Top

>Top



Parameters

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
d
d
Emitter and reflector distance are at rest
m
c
c
Speed of sound
m/s

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
\tau_1
tau_1
Echo time
s
v_e
v_e
Emitter speed
m/s
v_o
v_o
Reflector or receiver speed
m/s
d_0
d_0
Reflector starting distance
m
x
x
Relative position emitter in motion and reflector at rest
m
\tau_2
tau_2
Second echo time
s
\tau
tau
Time between pulses
s
t
t
Time from start of trace
s

Calculations


First, select the equation: to , then, select the variable: to
d = c * tau_1 /2 d_0 =( c + v_e )* tau_1 /2 v_o = c *( 2* v_e * tau + ( c + v_e )*( tau_2 - tau_1 ))/(2* c * tau + ( c + v_e )*( tau_2 - tau_1 )) x = ( c + v_e )* tau_1 /2 - v_e * t x =((2* tau * tau_1 +( tau_2 - tau_1 )* t )*( c - v_e )*( v_e + c ))/(( v_e + c )*( tau_2 - tau_1 ) + 2* c * tau ))tau_1dv_ev_od_0xtau_2ctaut

Calculations

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

Variable Given Calculate Target : Equation To be used
d = c * tau_1 /2 d_0 =( c + v_e )* tau_1 /2 v_o = c *( 2* v_e * tau + ( c + v_e )*( tau_2 - tau_1 ))/(2* c * tau + ( c + v_e )*( tau_2 - tau_1 )) x = ( c + v_e )* tau_1 /2 - v_e * t x =((2* tau * tau_1 +( tau_2 - tau_1 )* t )*( c - v_e )*( v_e + c ))/(( v_e + c )*( tau_2 - tau_1 ) + 2* c * tau ))tau_1dv_ev_od_0xtau_2ctaut




Equations

#
Equation

d = \displaystyle\frac{1}{2} c \tau_1

d = c * tau_1 /2


d_0 = \displaystyle\frac{1}{2} (c + v_e) \tau_1

d_0 =( c + v_e )* tau_1 /2


v_o = \displaystyle\frac{2 v_e \tau + ( c + v_e )( \tau_2 - \tau_1 )}{2 c \tau + ( c + v_e )( \tau_2 - \tau_1 )}c

v_o = c *( 2* v_e * tau + ( c + v_e )*( tau_2 - tau_1 ))/(2* c * tau + ( c + v_e )*( tau_2 - tau_1 ))


x = \displaystyle\frac{1}{2}( c + v_e ) \tau_1 - v_e t

x = ( c + v_e )* tau_1 /2 - v_e * t


x =\displaystyle\frac{(2 \tau \tau_1 +( \tau_2 - \tau_1 ) t )( c - v_e )( v_e + c )}{( v_e + c )( \tau_2 - \tau_1 )+2 c \tau )}

x =((2* tau * tau_1 +( tau_2 - tau_1 )* t )*( c - v_e )*( v_e + c ))/(( v_e + c )*( tau_2 - tau_1 ) + 2* c * tau ))

ID:(15469, 0)



Emitter and reflector distance are at rest

Equation

>Top, >Model


If there is no movement, the time required for signal the echo time (\tau_1) to travel at the speed of sound the speed of sound (c) is c \tau, which is twice the distance between the transmitter and the reflector.

Therefore, the emitter and reflector distance are at rest (d) is:

d = \displaystyle\frac{1}{2} c \tau_1

\tau_1
Echo time
s
8650
d
Emitter and reflector distance are at rest
m
9911
c
Speed of sound
m/s
8652
d = c * tau_1 /2 d_0 =( c + v_e )* tau_1 /2 x =((2* tau * tau_1 +( tau_2 - tau_1 )* t )*( c - v_e )*( v_e + c ))/(( v_e + c )*( tau_2 - tau_1 ) + 2* c * tau )) x = ( c + v_e )* tau_1 /2 - v_e * t v_o = c *( 2* v_e * tau + ( c + v_e )*( tau_2 - tau_1 ))/(2* c * tau + ( c + v_e )*( tau_2 - tau_1 ))tau_1dv_ev_od_0xtau_2ctaut

ID:(11873, 0)



Moving emitter distance and reflector at rest

Equation

>Top, >Model


In the case where the emitter moves at a speed of the emitter speed (v_e) and the reflector remains stationary, its initial distance the reflector starting distance (d_0) can be estimated using the echo time the echo time (\tau_1). In this scenario, the distance traveled equals c \tau_1, which is equal to the initial distance between the emitter and reflector the reflector starting distance (d_0), plus the return trip, which is the same d_0 minus the distance traveled by the emitter v_e\tau_1. Hence, we have:

d_0 + d_0 - v_e\tau_1 = c\tau_1



or that the reflector starting distance (d_0) is:

d_0 = \displaystyle\frac{1}{2} (c + v_e) \tau_1

\tau_1
Echo time
s
8650
v_e
Emitter speed
m/s
8653
d_0
Reflector starting distance
m
8649
c
Speed of sound
m/s
8652
d = c * tau_1 /2 d_0 =( c + v_e )* tau_1 /2 x =((2* tau * tau_1 +( tau_2 - tau_1 )* t )*( c - v_e )*( v_e + c ))/(( v_e + c )*( tau_2 - tau_1 ) + 2* c * tau )) x = ( c + v_e )* tau_1 /2 - v_e * t v_o = c *( 2* v_e * tau + ( c + v_e )*( tau_2 - tau_1 ))/(2* c * tau + ( c + v_e )*( tau_2 - tau_1 ))tau_1dv_ev_od_0xtau_2ctaut

ID:(11874, 0)



Relative position emitter in motion and reflector at rest

Equation

>Top, >Model


To determine the relative position emitter in motion and reflector at rest (x), one must consider the reflector starting distance (d_0) and subtract the path traveled by the emitter. This latter is calculated from the emitter speed (v_e) and the time from start of trace (t), resulting in:

x = \displaystyle\frac{1}{2}( c + v_e ) \tau_1 - v_e t

v_e
Emitter speed
m/s
8653
x
Relative position emitter in motion and reflector at rest
m
9912
c
Speed of sound
m/s
8652
t
Time from start of trace
s
8520
d = c * tau_1 /2 d_0 =( c + v_e )* tau_1 /2 x =((2* tau * tau_1 +( tau_2 - tau_1 )* t )*( c - v_e )*( v_e + c ))/(( v_e + c )*( tau_2 - tau_1 ) + 2* c * tau )) x = ( c + v_e )* tau_1 /2 - v_e * t v_o = c *( 2* v_e * tau + ( c + v_e )*( tau_2 - tau_1 ))/(2* c * tau + ( c + v_e )*( tau_2 - tau_1 ))tau_1dv_ev_od_0xtau_2ctaut

ID:(11876, 0)



Moving reflector speed

Equation

>Top, >Model


The reflector or receiver speed (v_o) can be calculated from the emitter speed (v_e) and the speed of sound (c), along with the echo time (\tau_1), the second echo time (\tau_2), and the time between pulses (\tau), using the formula:

v_o = \displaystyle\frac{2 v_e \tau + ( c + v_e )( \tau_2 - \tau_1 )}{2 c \tau + ( c + v_e )( \tau_2 - \tau_1 )}c

\tau_1
Echo time
s
8650
v_e
Emitter speed
m/s
8653
v_o
Reflector or receiver speed
m/s
8654
\tau_2
Second echo time
s
8651
c
Speed of sound
m/s
8652
\tau
Time between pulses
s
8657
d = c * tau_1 /2 d_0 =( c + v_e )* tau_1 /2 x =((2* tau * tau_1 +( tau_2 - tau_1 )* t )*( c - v_e )*( v_e + c ))/(( v_e + c )*( tau_2 - tau_1 ) + 2* c * tau )) x = ( c + v_e )* tau_1 /2 - v_e * t v_o = c *( 2* v_e * tau + ( c + v_e )*( tau_2 - tau_1 ))/(2* c * tau + ( c + v_e )*( tau_2 - tau_1 ))tau_1dv_ev_od_0xtau_2ctaut

With the distance to the object when emitting first signal (d_1) and the speed of sound (c), one can estimate the time at which the first signal reflects as d_1/c, and with the distance to the object when emitting second signal (d_2), the second time as \tau + d_2/c. Therefore, the time between the reflections of the two signals is given by:

\Delta\tau = \tau + \displaystyle\frac{ d_2 }{ c } - \displaystyle\frac{ d_1 }{ c }



The position where the first signal reflects is the distance to the object when emitting first signal (d_1), and the second is ($$). Hence, the distance traveled by the reflector is:

\Delta x = v_e \tau + d_2 - d_1



Thus, the velocity of the reflector is:

v_o=\displaystyle\frac{\Delta x}{\Delta t}=\displaystyle\frac{ v_e\tau + d_2 - d_1}{ \tau + \displaystyle\frac{d_2}{c} - \displaystyle\frac{d_1}{c}}



As mentioned earlier in echo time s, emitter speed m/s, reflector starting distance m and speed of sound m/s, the difference between the distances traveled is given by:

d_2-d_1=\displaystyle\frac{1}{2}( c + v_e )( \tau_2 - \tau_1 )



and the resulting velocity is:

v_o = \displaystyle\frac{2 v_e \tau + ( c + v_e )( \tau_2 - \tau_1 )}{2 c \tau + ( c + v_e )( \tau_2 - \tau_1 )}c

ID:(11877, 0)



Moving emitter and reflector distance

Equation

>Top, >Model


Para calcular la posición relativa entre emisor y reflector se debe describir primero la posición del reflector y luego restar la del emisor. Este ultimo se mueve a una velocidad v_e por lo que su posición es v_et. La posición del reflector en el tiempo d_1/c a una distancia d_1 por lo que con la velocidad v_o se tiene

d_1 + v_o\left(t - \displaystyle\frac{d_1}{c}\right) = v_ot + d_1\left(1 -\displaystyle\frac{v_o}{c}\right)=v_ot + \left(1 -\displaystyle\frac{v_o}{c}\right)\left(1 +\displaystyle\frac{v_e}{c}\right)c\tau_1



Como el emisor reduce la distancia en el tiempo según

v_et



se tiene que la distancia efectiva entre objeto y emisor es con

x =\displaystyle\frac{(2 \tau \tau_1 +( \tau_2 - \tau_1 ) t )( c - v_e )( v_e + c )}{( v_e + c )( \tau_2 - \tau_1 )+2 c \tau )}

\tau_1
Echo time
s
8650
v_e
Emitter speed
m/s
8653
x
Relative position emitter in motion and reflector at rest
m
9912
\tau_2
Second echo time
s
8651
c
Speed of sound
m/s
8652
\tau
Time between pulses
s
8657
d = c * tau_1 /2 d_0 =( c + v_e )* tau_1 /2 x =((2* tau * tau_1 +( tau_2 - tau_1 )* t )*( c - v_e )*( v_e + c ))/(( v_e + c )*( tau_2 - tau_1 ) + 2* c * tau )) x = ( c + v_e )* tau_1 /2 - v_e * t v_o = c *( 2* v_e * tau + ( c + v_e )*( tau_2 - tau_1 ))/(2* c * tau + ( c + v_e )*( tau_2 - tau_1 ))tau_1dv_ev_od_0xtau_2ctaut

ID:(11875, 0)