Recolector de hortalizas

Image

>Top



ID:(12872, 0)



Succionador de frutas

Image

>Top



ID:(12873, 0)



Caída libre de la fruta

Equation

>Top, >Model


Para cosechar fruta existe la posibilidad de liberarla y capturarla en pleno vuelo. Para ello se dispone del tiempo que se puede calcular de

$S = \displaystyle\frac{v_t^2}{g}\ln(\cosh\displaystyle\frac{gt}{v_t})$

ID:(12870, 0)



Resistance force

Equation

>Top, >Model


The resistance force ($F_W$) kann mit the density ($\rho$), the coefficient of resistance ($C_W$), the total object profile ($S_p$) und the speed with respect to the medium ($v$) entsprechend berechnet werden folgende Formel:

$ F_W =\displaystyle\frac{1}{2} \rho S_p C_W v ^2$

$C_W$
Coefficient of resistance
$-$
6122
$\rho$
Density
$kg/m^3$
5342
$F_W$
Resistance force
$N$
6124
$v$
Speed with respect to the medium
$m/s$
6110
$S_p$
Total object profile
$m^2$
6123

Similarly to how the equation for the lift force ($F_L$) was derived using the density ($\rho$), the coefficient of lift ($C_L$), the surface that generates lift ($S_w$), and the speed with respect to the medium ($v$)

$ F_L =\displaystyle\frac{1}{2} \rho S_w C_L v ^2$



in this analogy, what corresponds to the surface that generates lift ($S_w$) will be equivalent to the total object profile ($S_p$) and the coefficient of lift ($C_L$) to the coefficient of resistance ($C_W$), thus the resistance force ($F_W$) is calculated:

$ F_W =\displaystyle\frac{1}{2} \rho S_p C_W v ^2$

The drag coefficient is measured and, in turbulent flows over aerodynamic bodies, values are generally found around 0.4.

ID:(4418, 0)



Fuerza gravitacional sin sustentación

Equation

>Top, >Model


Si se resta la fuerza de flotación de la fruta en el aire la fuerza gravitacional será

$ F_g = m_b g \displaystyle\frac{ \rho_b - \rho }{ \rho_b }$

ID:(12876, 0)



Velocidad relativa de caída

Equation

>Top, >Model


Si se iguala la fuerza de resistencia aerodinámica con la de gravedad menos la de flotación se obtiene la velocidad de caída relativa como

$ v_r ^2 = 2 g m_b \displaystyle\frac{ \rho_b -

O sea que una fruta en una corriente de esta misma velocidad flotara y impurezas serán arrastradas con la corriente. El sistema también se puede usar para separar calibres.

ID:(12877, 0)



Vibrador para cosechar frutas

Image

>Top



ID:(12871, 0)



Modelo del péndulo físico

Image

>Top



ID:(12874, 0)



Angular frequency for a physical pendulum

Equation

>Top, >Model


Regarding the physical pendulum:



The energy is given by:

$E=\displaystyle\frac{1}{2}I\omega^2+\displaystyle\frac{1}{2}mgl\theta^2$



As a result, the angular frequency is:

$ \omega_0 ^2=\displaystyle\frac{ m g L }{ I }$

$\omega_0$
Angular Frequency of Physical Pendulum
$rad/s$
6288
$g$
Gravitational Acceleration
9.8
$m/s^2$
5310
$m_g$
Gravitational mass
$kg$
8762
$I$
Moment of inertia for axis that does not pass through the CM
$kg m^2$
5315
$L$
Pendulum Length
$m$
6282

Given that the kinetic energy of the physical pendulum with moment of inertia $I$ and angular velocity $\omega$ is represented by

$ K_r =\displaystyle\frac{1}{2} I \omega ^2$



and the gravitational potential energy is given by

$ V =\displaystyle\frac{1}{2} m_g g L \theta ^2$



where $m$ is mass, $l$ is string length, $\theta$ is the angle, and $g$ is angular acceleration, the energy equation can be expressed as

$E=\displaystyle\frac{1}{2}I\omega^2+\displaystyle\frac{1}{2}mgl\theta^2$



As the period is defined as

$T=2\pi\sqrt{\displaystyle\frac{I}{mgl}}$



we can determine the angular frequency as

$ \omega_0 ^2=\displaystyle\frac{ m g L }{ I }$

ID:(4517, 0)