Processing math: 1%
User: No user logged in.


Recolector de hortalizas

Image

>Top



ID:(12872, 0)



Succionador de frutas

Image

>Top



ID:(12873, 0)



Caída libre de la fruta

Equation

>Top, >Model


Para cosechar fruta existe la posibilidad de liberarla y capturarla en pleno vuelo. Para ello se dispone del tiempo que se puede calcular de

S = \displaystyle\frac{v_t^2}{g}\ln(\cosh\displaystyle\frac{gt}{v_t})

F_W = rho * S_p * C_W * v ^2/2 omega_0 ^2 = m * g * L / I S = v_t^2*log(cosh(g*t/v_t))/g F_g = m_g * g * ( rho_b - rho )/ rho_b v_r ^2 = 2 * g * m_b * ( rho_b - rho )/( rho_b * rho * S_p * C_w )omega_0C_Wrhogm_gILF_WvS_p

ID:(12870, 0)



Resistance force

Equation

>Top, >Model


The resistance force (F_W) kann mit the density (\rho), the coefficient of resistance (C_W), the total object profile (S_p) und the speed with respect to the medium (v) entsprechend berechnet werden folgende Formel:

F_W =\displaystyle\frac{1}{2} \rho S_p C_W v ^2

C_W
Coefficient of resistance
-
6122
\rho
Density
kg/m^3
5342
F_W
Resistance force
N
6124
v
Speed with respect to the medium
m/s
6110
S_p
Total object profile
m^2
6123
F_W = rho * S_p * C_W * v ^2/2 omega_0 ^2 = m * g * L / I S = v_t^2*log(cosh(g*t/v_t))/g F_g = m_g * g * ( rho_b - rho )/ rho_b v_r ^2 = 2 * g * m_b * ( rho_b - rho )/( rho_b * rho * S_p * C_w )omega_0C_Wrhogm_gILF_WvS_p

Similarly to how the equation for the lift force (F_L) was derived using the density (\rho), the coefficient of lift (C_L), the surface that generates lift (S_w), and the speed with respect to the medium (v)

F_L =\displaystyle\frac{1}{2} \rho S_w C_L v ^2



in this analogy, what corresponds to the surface that generates lift (S_w) will be equivalent to the total object profile (S_p) and the coefficient of lift (C_L) to the coefficient of resistance (C_W), thus the resistance force (F_W) is calculated:

F_W =\displaystyle\frac{1}{2} \rho S_p C_W v ^2

The drag coefficient is measured and, in turbulent flows over aerodynamic bodies, values are generally found around 0.4.

ID:(4418, 0)



Fuerza gravitacional sin sustentación

Equation

>Top, >Model


Si se resta la fuerza de flotación de la fruta en el aire la fuerza gravitacional será

F_g = m_b g \displaystyle\frac{ \rho_b - \rho }{ \rho_b }

F_W = rho * S_p * C_W * v ^2/2 omega_0 ^2 = m * g * L / I S = v_t^2*log(cosh(g*t/v_t))/g F_g = m_g * g * ( rho_b - rho )/ rho_b v_r ^2 = 2 * g * m_b * ( rho_b - rho )/( rho_b * rho * S_p * C_w )omega_0C_Wrhogm_gILF_WvS_p

ID:(12876, 0)



Velocidad relativa de caída

Equation

>Top, >Model


Si se iguala la fuerza de resistencia aerodinámica con la de gravedad menos la de flotación se obtiene la velocidad de caída relativa como

$ v_r ^2 = 2 g m_b \displaystyle\frac{ \rho_b -

F_W = rho * S_p * C_W * v ^2/2 omega_0 ^2 = m * g * L / I S = v_t^2*log(cosh(g*t/v_t))/g F_g = m_g * g * ( rho_b - rho )/ rho_b v_r ^2 = 2 * g * m_b * ( rho_b - rho )/( rho_b * rho * S_p * C_w )omega_0C_Wrhogm_gILF_WvS_p

O sea que una fruta en una corriente de esta misma velocidad flotara y impurezas serán arrastradas con la corriente. El sistema también se puede usar para separar calibres.

ID:(12877, 0)



Vibrador para cosechar frutas

Image

>Top



ID:(12871, 0)



Modelo del péndulo físico

Image

>Top



ID:(12874, 0)



Angular frequency for a physical pendulum

Equation

>Top, >Model


Regarding the physical pendulum:



The energy is given by:

E=\displaystyle\frac{1}{2}I\omega^2+\displaystyle\frac{1}{2}mgl\theta^2



As a result, the angular frequency is:

\omega_0 ^2=\displaystyle\frac{ m g L }{ I }

\omega_0
Angular Frequency of Physical Pendulum
rad/s
6288
g
Gravitational Acceleration
9.8
m/s^2
5310
m_g
Gravitational mass
kg
8762
I
Moment of inertia for axis that does not pass through the CM
kg m^2
5315
L
Pendulum Length
m
6282
F_W = rho * S_p * C_W * v ^2/2 omega_0 ^2 = m * g * L / I S = v_t^2*log(cosh(g*t/v_t))/g F_g = m_g * g * ( rho_b - rho )/ rho_b v_r ^2 = 2 * g * m_b * ( rho_b - rho )/( rho_b * rho * S_p * C_w )omega_0C_Wrhogm_gILF_WvS_p

Given that the kinetic energy of the physical pendulum with moment of inertia I and angular velocity \omega is represented by

K_r =\displaystyle\frac{1}{2} I \omega ^2



and the gravitational potential energy is given by

V =\displaystyle\frac{1}{2} m_g g L \theta ^2



where m is mass, l is string length, \theta is the angle, and g is angular acceleration, the energy equation can be expressed as

E=\displaystyle\frac{1}{2}I\omega^2+\displaystyle\frac{1}{2}mgl\theta^2



As the period is defined as

T=2\pi\sqrt{\displaystyle\frac{I}{mgl}}



we can determine the angular frequency as

\omega_0 ^2=\displaystyle\frac{ m g L }{ I }

ID:(4517, 0)