
Distribution and Entropy
Storyboard 
When analyzing the probability of finding the system in a particular state, we observe that the equilibrium condition (\beta) is an integral part of the distribution's structure. Furthermore, it becomes evident that the function that best models the system is the logarithm of the number of states, which is associated with what we will term entropy.
ID:(437, 0)

Forming a maximum
Image 
When we multiply the number of cases, we obtain a function with a very pronounced peak.
The system is more likely to be found at the energy where the peak of the probability curve occurs.
ID:(11543, 0)

Taylor series for the number of states
Equation 
To study the behavior of the number of states function, we can expand it around the equilibrium energy value \bar{E}. If we do this expansion in the logarithm of the number of states, we obtain
\ln\Omega(E)=\ln\Omega(\bar{E})+\displaystyle\frac{\partial\ln\Omega}{\partial E}\eta+\displaystyle\frac{1}{2}\displaystyle\frac{\partial^2\ln\Omega}{\partial E^2}\eta^2\ldots
where \eta=E-\bar{E}. Using for the definition of
k_B T \equiv\displaystyle\frac{1}{ \beta } |
and
\lambda\equiv-\displaystyle\frac{\partial^2\ln\Omega}{\partial E^2}=-\displaystyle\frac{\partial\ln\beta}{\partial E}
we obtain the expression with :
![]() |
ID:(3443, 0)

Shape of the probability function
Equation 
If we consider the expansion of the number of states with beta del sistema 1/J, desviación de la energía J, logaritmo del numero de estados del sistema con la energía E -, logaritmo del numero de estados del sistema con la energía media \bar{E} - and medida del ancho de la distribución de probabilidad 1/J^2:
\ln\Omega(E)=\ln\Omega(\bar{E})+\beta\eta-\displaystyle\frac{1}{2}\lambda\eta^2\ldots |
we can estimate the logarithm of the probability:
\ln P = \ln[\Omega(E)\Omega'(E')] = \ln\Omega(E) + \ln\Omega'(E') = \ln\Omega(\bar{E}) + \ln\Omega'(\bar{E'}) + (\beta - \beta')\eta - \frac{1}{2}(\lambda + \lambda')\eta^2\ldots
For the case of equilibrium, both betas are equal, and the probability that one of the systems has an energy E is reduced to a Gaussian distribution, which is expressed with beta del sistema 1/J, desviación de la energía J, logaritmo del numero de estados del sistema con la energía E -, logaritmo del numero de estados del sistema con la energía media \bar{E} - and medida del ancho de la distribución de probabilidad 1/J^2 as:
P(E)=P(\bar{E})e^{-\lambda_0(E-\bar{E})^2/2} |
where
\lambda_0 = \lambda + \lambda'
ID:(3444, 0)

Distribution width
Equation 
The factor that defines the width of the probability curve is the quadratic factor in the Taylor series expansion, which is expressed with as follows:
\lambda_0\equiv-\displaystyle\frac{\partial^2\ln\Omega}{\partial E^2}=-\displaystyle\frac{\partial\ln\beta}{\partial E} |
It can be shown that the introduced number \lambda is always positive. An indication of this comes from the function of the number of states we have already calculated for the case of free particles. In that case, as the number of states is proportional to the energy raised to the power of the number of degrees of freedom f, we find that with
\Omega\sim E^f
we have
\lambda_0\equiv-\displaystyle\frac{\partial^2\ln\Omega}{\partial E^2}=-f\displaystyle\frac{\partial^2\ln E}{\partial E^2}=\displaystyle\frac{f}{E^2}
.
ID:(11549, 0)

Definition of entropy based on possible states
Equation 
The key parameter in the study of equilibrium is given by the logarithm of the number of states, which with is expressed as:
\beta(E)\equiv\displaystyle\frac{\partial\ln\Omega}{\partial E} |
The natural logarithm of the number of states multiplied by the Boltzmann constant k_B is defined as the system's entropy, which is expressed with as follows:
S \equiv k_B \ln \Omega |
ID:(3439, 0)

Thermodynamics relationship
Equation 
The definition of \beta is found in
\beta(E)\equiv\displaystyle\frac{\partial\ln\Omega}{\partial E} |
that of temperature is in
k_B T \equiv\displaystyle\frac{1}{ \beta } |
and that of entropy is in constante de Boltzmann J/K, entropia del sistema J/K and numero de estados del sistema con la energía E -
S \equiv k_B \ln \Omega |
These definitions lead us to a thermodynamic relationship that indicates how temperature T is related to constante de Boltzmann J/K, entropia del sistema J/K and numero de estados del sistema con la energía E -:
![]() |
ID:(3442, 0)

Entropy and system equilibrium
Equation 
With the definition of entropy as constante de Boltzmann J/K, entropia del sistema J/K and numero de estados del sistema con la energía E -:
S \equiv k_B \ln \Omega |
and considering that in equilibrium it holds with :
\displaystyle\frac{\partial\ln\Omega}{\partial E}-\displaystyle\frac{\partial\ln\Omega_h}{\partial E_h}=0 |
we conclude that in equilibrium, the energy E must always be maximum with :
S + S_h =max |
ID:(3440, 0)

0
Video
Video: Distribution and Entropy