Distribution and Entropy

Storyboard

When analyzing the probability of finding the system in a particular state, we observe that the equilibrium condition ($\beta$) is an integral part of the distribution's structure. Furthermore, it becomes evident that the function that best models the system is the logarithm of the number of states, which is associated with what we will term entropy.

>Model

ID:(437, 0)



Forming a maximum

Definition

When we multiply the number of cases, we obtain a function with a very pronounced peak.

The system is more likely to be found at the energy where the peak of the probability curve occurs.

ID:(11543, 0)



Distribution and Entropy

Description

When analyzing the probability of finding the system in a particular state, we observe that the equilibrium condition ($\beta$) is an integral part of the distribution's structure. Furthermore, it becomes evident that the function that best models the system is the logarithm of the number of states, which is associated with what we will term entropy.

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$\beta$
beta
Beta del sistema
1/J
$k_B$
k_B
Constante de Boltzmann
J/K
$\eta$
eta
Desviación de la energía
J
$E_2$
E_2
Energía del reservorio
J
$E$
E
Energía del sistema
J
$\bar{E}$
mE
Energía media del sistema
J
$S$
S
Entropia del sistema
J/K
$S_{max}$
S_max
Entropia máxima
J/K
$\ln(\Omega(E))$
ln_Omega_E
Logaritmo del numero de estados del sistema con la energía $E$
-
$\ln(\Omega(\bar{E}))$
ln_Omega_E_m
Logaritmo del numero de estados del sistema con la energía media $\bar{E}$
-
$\lambda$
lambda
Medida del ancho de la distribución de probabilidad
1/J^2
$\lambda_0$
lambda_0
Medida del ancho de la distribución de probabilidad total
1/J^2
$\Omega_E$
Omega_E
Numero de estados del sistema con la energía $E$
-
$P_E$
P_E
Probabilidad del sistema de tener una energía $E$
-
$P_0$
P_0
Probabilidad del sistema de tener una energía media $\bar{E}$
-
$T$
T
Temperatura del sistema
K

Calculations


First, select the equation:   to ,  then, select the variable:   to 

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

 Variable   Given   Calculate   Target :   Equation   To be used



Equations


Examples

When we multiply the number of cases, we obtain a function with a very pronounced peak.

The system is more likely to be found at the energy where the peak of the probability curve occurs.

(ID 11543)

To study the behavior of the number of states function, we can expand it around the equilibrium energy value $\bar{E}$. If we do this expansion in the logarithm of the number of states, we obtain

$\ln\Omega(E)=\ln\Omega(\bar{E})+\displaystyle\frac{\partial\ln\Omega}{\partial E}\eta+\displaystyle\frac{1}{2}\displaystyle\frac{\partial^2\ln\Omega}{\partial E^2}\eta^2\ldots$



where $\eta=E-\bar{E}$. Using for the definition of

$ k_B T \equiv\displaystyle\frac{1}{ \beta }$



and

$\lambda\equiv-\displaystyle\frac{\partial^2\ln\Omega}{\partial E^2}=-\displaystyle\frac{\partial\ln\beta}{\partial E}$



we obtain the expression with :

$\ln\Omega(E)=\ln\Omega(\bar{E})+\beta\eta-\displaystyle\frac{1}{2}\lambda\eta^2\ldots$

(ID 3443)

If we consider the expansion of the number of states with beta del sistema $1/J$, desviación de la energía $J$, logaritmo del numero de estados del sistema con la energía $E$ $-$, logaritmo del numero de estados del sistema con la energía media $\bar{E}$ $-$ and medida del ancho de la distribución de probabilidad $1/J^2$:

$\ln\Omega(E)=\ln\Omega(\bar{E})+\beta\eta-\displaystyle\frac{1}{2}\lambda\eta^2\ldots$



we can estimate the logarithm of the probability:

$\ln P = \ln[\Omega(E)\Omega'(E')] = \ln\Omega(E) + \ln\Omega'(E') = \ln\Omega(\bar{E}) + \ln\Omega'(\bar{E'}) + (\beta - \beta')\eta - \frac{1}{2}(\lambda + \lambda')\eta^2\ldots$



For the case of equilibrium, both betas are equal, and the probability that one of the systems has an energy $E$ is reduced to a Gaussian distribution, which is expressed with beta del sistema $1/J$, desviación de la energía $J$, logaritmo del numero de estados del sistema con la energía $E$ $-$, logaritmo del numero de estados del sistema con la energía media $\bar{E}$ $-$ and medida del ancho de la distribución de probabilidad $1/J^2$ as:

$P(E)=P(\bar{E})e^{-\lambda_0(E-\bar{E})^2/2}$



where

$\lambda_0 = \lambda + \lambda'$

(ID 3444)

The factor that defines the width of the probability curve is the quadratic factor in the Taylor series expansion, which is expressed with as follows:

$\lambda_0\equiv-\displaystyle\frac{\partial^2\ln\Omega}{\partial E^2}=-\displaystyle\frac{\partial\ln\beta}{\partial E}$



It can be shown that the introduced number $\lambda$ is always positive. An indication of this comes from the function of the number of states we have already calculated for the case of free particles. In that case, as the number of states is proportional to the energy raised to the power of the number of degrees of freedom $f$, we find that with

$\Omega\sim E^f$



we have

$\lambda_0\equiv-\displaystyle\frac{\partial^2\ln\Omega}{\partial E^2}=-f\displaystyle\frac{\partial^2\ln E}{\partial E^2}=\displaystyle\frac{f}{E^2}$

.

(ID 11549)

The key parameter in the study of equilibrium is given by the logarithm of the number of states, which with is expressed as:

$\beta(E)\equiv\displaystyle\frac{\partial\ln\Omega}{\partial E}$



The natural logarithm of the number of states multiplied by the Boltzmann constant $k_B$ is defined as the system's entropy, which is expressed with as follows:

$ S \equiv k_B \ln \Omega $

(ID 3439)

The definition of $\beta$ is found in

$\beta(E)\equiv\displaystyle\frac{\partial\ln\Omega}{\partial E}$



that of temperature is in

$ k_B T \equiv\displaystyle\frac{1}{ \beta }$



and that of entropy is in constante de Boltzmann $J/K$, entropia del sistema $J/K$ and numero de estados del sistema con la energía $E$ $-$

$ S \equiv k_B \ln \Omega $



These definitions lead us to a thermodynamic relationship that indicates how temperature $T$ is related to constante de Boltzmann $J/K$, entropia del sistema $J/K$ and numero de estados del sistema con la energía $E$ $-$:

$\displaystyle\frac{1}{T}=\displaystyle\frac{\partial S}{\partial E}$

(ID 3442)

With the definition of entropy as constante de Boltzmann $J/K$, entropia del sistema $J/K$ and numero de estados del sistema con la energía $E$ $-$:

$ S \equiv k_B \ln \Omega $



and considering that in equilibrium it holds with :

$\displaystyle\frac{\partial\ln\Omega}{\partial E}-\displaystyle\frac{\partial\ln\Omega_h}{\partial E_h}=0$



we conclude that in equilibrium, the energy $E$ must always be maximum with :

$ S + S_h =max$

(ID 3440)


ID:(437, 0)