Heat capacity
Equation
Caloric capacity is the heat or energy
$\delta Q = C_V dT$
\\n\\nIf the energy of
$U=\displaystyle\frac{f}{2}nN_Ak_BT$
\\n\\nso if the volume is kept constant\\n\\n
$dU=\delta Q=\displaystyle\frac{f}{2}nN_Ak_BdT$
\\n\\nso with\\n\\n
$R=k_BN_A$
you have
$C_V=\displaystyle\frac{f}{2}nR$ |
ID:(3225, 0)
Specific heat
Equation
Specific heat corresponds to caloric capacity per mass
$c_V=\displaystyle\frac{C_V}{M}$
If
$M=nN_Am$
with
$C_V=\displaystyle\frac{f}{2}nkN_A$
so the specific heat is
$ c_V =\displaystyle\frac{ f k_B }{2 m }$ |
ID:(3941, 0)