Heat transport equation
Equation
The heat transport equation describes how a temperature difference
$\displaystyle\frac{ dQ }{ dt }= S \lambda \displaystyle\frac{ dT }{ dz }$ |
ID:(3948, 0)
Thermal conduction as energy exchange
Equation
If the temperature at a point
$\displaystyle\frac{f}{2}k\Delta T=\displaystyle\frac{f}{2}k(T(z+dz)-T(z))$
The number of particles participating in this process is equal to those found in a volume of section
$S,l,c_n$
Therefore, the heat flowing
$ dQ =-\displaystyle\frac{ f }{2} S l c_n m k_B dT $ |
where the negative sign is due to the heat flowing from the area with the highest to the lowest temperature.
ID:(3947, 0)
Microscopic thermal conduction
Equation
If you consider the
$ dQ =-\displaystyle\frac{ f }{2} S l c_n m k_B dT $ |
where
$\displaystyle\frac{dQ}{dt}=-\displaystyle\frac{f}{2}S,l,c_nm\displaystyle\frac{dt}{dz}\displaystyle\frac{dz}{dt}$
The derivative of the
$\displaystyle\frac{dz}{dt}=v_z=\displaystyle\frac{1}{3}\sqrt{\langle v^2\rangle}$
In this way the force created by the mixture of moments like
$\displaystyle\frac{dQ}{dt}=-\displaystyle\frac{1}{3}S,l,c_nm\sqrt{\langle v^2\rangle}\displaystyle\frac{dT}{dz}$
If you compare this expression with the viscous force
$\displaystyle\frac{dQ}{dt}=-S\lambda\displaystyle\frac{dT}{dz}$
it is concluded that thermal conduction has to be
$\lambda=\displaystyle\frac{f}{6}k\,c_nl\sqrt{\langle v^2\rangle}$ |
ID:(3949, 0)
Thermal conduction depending on the temperature
Equation
If thermal conduction is
$\lambda=\displaystyle\frac{f}{6}k\,c_nl\sqrt{\langle v^2\rangle}$ |
with
$l=\displaystyle\frac{1}{\sqrt{2}\pi d^2c_n}$
the viscosity as a function of the temperature will be:
$\lambda=\displaystyle\frac{1}{6\pi d^2}\sqrt{\displaystyle\frac{f^3k^3T}{2m}}$ |
where the negative sign is because the force is opposite to the direction of flow.
ID:(3950, 0)