Processing math: 100%
User: No user logged in.


Stokes force

Storyboard

An example of viscous force is the model that arises when a sphere moves within a viscous medium. This model and the associated equation are known by the name of their author, George Stokes.

The Stokes' force depends on the viscosity of the medium, the radius of the sphere, and the velocity at which it moves through the medium. Similarly, if the medium itself is in motion, it drags the object along with it.

>Model

ID:(1964, 0)



Mechanisms

Iframe

>Top



Code
Concept
George Stokes
Stokes force

Mechanisms

Fall pathFall speedForces on a sphereGeorge StokesOstwald methodStokes force

ID:(15540, 0)



George Stokes

Description

>Top


George Stokes made significant contributions to the fields of hydrodynamics and mathematics. He is primarily remembered for the well-known Stokes\' law applied to spherical bodies in a fluid flow and for the Stokes\' theorem in mathematics.

George Gabriel Stokes (1819-1903)

ID:(12535, 0)



Forces on a sphere falling in a medium

Description

>Top


When a sphere is thrown into a viscous medium, there's an initial upward force, a gravitational Force (F_g), which gradually sinks the body. During this process, the sphere gains velocity, resulting in a downward force, a viscose force (F_v), which depends on the velocity. As the total velocity, the force with constant mass (F),

F = F_g - F_v



begins to decrease until it becomes null. From this moment on, the movement continues at a constant velocity since there's no force to accelerate it.

ID:(15544, 0)



Stokes force

Top

>Top


The Stokes force is the force generated by the flow around a sphere of the radio de la Gota (r) immersed in it. In this case, the model of force proportional to the speed (v) is used:

F_v = b v



In this context, it can be shown that the constant of the Viscose Force (b) with the viscosity (\eta) is equal to:

b \equiv 6 \pi \eta r



therefore, the Stokes force is expressed as:

F_v =6 \pi \eta r v

This force is mainly applied in laminar flows.

ID:(15555, 0)



Fall speed in viscous medium

Top

>Top


The motion of a sphere in two dimensions is characterized by the component x of velocity (v_x) with the initial horizontal speed (v_{0x}), the adaptation time (\tau), and the time (t):

v_x = v_{0x} e^{- t / \tau }



and the component y of velocity (v_y) with the initial vertical speed (v_{0y}), the adaptation time (\tau), the gravitational Acceleration (g), and the time (t):

v_y = g \tau + ( v_{0y} - g \tau )e^{- t / \tau }



which is represented in an v_x vs v_y diagram:

The diagram shows how both velocity components evolve over time. Initially, v equals v_{0x}, which corresponds to a point on the right edge of the graph. Over time, the velocity components evolve from the right side to the left edge, where the horizontal velocity is zero and the vertical velocity reaches the limit g\tau, so v/g\tau equals one.

ID:(15558, 0)



Fall path in viscous medium

Top

>Top


The horizontal displacement can be calculated using the equation for the position on the x-axis (x) with the initial position on the x-axis (x_0), the initial horizontal speed (v_{0x}), the adaptation time (\tau), and the time (t):

x = x_0 + v_{0x} \tau (1 - e^{- t / \tau })



and the vertical displacement for the position on the y-axis (y) with the initial position on the y-axis (y_0), the initial horizontal speed (v_{0x}), the adaptation time (\tau), and the time (t):

y = y_0 + \tau g t + \tau ( v_{0y} - g \tau )(1 - e^{- t / \tau })



which is graphed in the positions x vs y:

In this case, the position evolves from the left edge to the right, where it stops in its horizontal movement, reaching a maximum distance of v_{0x}\tau. The vertical displacement is described with a coordinate system whose origin is at the point where the trajectory begins and whose vertical version points downwards. In this sense, the increase in y corresponds to the descent of the sphere in the direction of gravity.

ID:(15559, 0)



Ostwald method for measuring viscosity

Description

>Top


The Ostwald viscosity measurement method is based on the behavior of a liquid flowing through a small-radius tube (capillary).

The liquid is introduced, suction is applied to exceed the upper mark, and then it is allowed to drain, measuring the time it takes for the level to pass from the upper to the lower mark.

The experiment is conducted first with a liquid for which viscosity and density are known (e.g., distilled water), and then with the liquid for which viscosity is to be determined. If conditions are identical, the liquid flowing in both cases will be similar, and thus, the time will be proportional to the density divided by the viscosity. Thus, a comparison equation between both viscosities can be established:

ID:(15545, 0)



Model

Top

>Top



Parameters

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
\tau
tau
Adaptation time
s
v_x
v_x
Component x of velocity
m/s
v_y
v_y
Component y of velocity
m/s
b
b
Constant of the Viscose Force
kg/s
\rho
rho
Density
kg/m^3
\eta
eta
Environment viscosity
Pa s
g
g
Gravitational Acceleration
m/s^2
m_g
m_g
Gravitational mass
kg
m_i
m_i
Inertial Mass
kg
x_0
x_0
Initial position on the x-axis
m
y_0
y_0
Initial position on the y-axis
m
\pi
pi
Pi
rad
r_e
r_e
Radio of the Sphere
m
\eta
eta
Viscosity
Pa s
\tau_g
tau_g
Viscosity time and gravitational mass
s
\tau_i
tau_i
Viscosity time and inertial mass
s

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
F
F
Force with constant mass
N
F_g
F_g
Gravitational Force
N
v_{0x}
v_0x
Initial horizontal speed
m/s
v_{0y}
v_0y
Initial vertical speed
m/s
a
a
Instant acceleration
m/s^2
x
x
Position on the x-axis
m
y
y
Position on the y-axis
m
r
r
Radius of a sphere
v
v
Speed
m/s
t
t
Time
s
F_v
F_v
Viscose force
N
V
V
Volume of a sphere
m^3

Calculations


First, select the equation: to , then, select the variable: to
b = 6* pi * eta * r F = F_g - F_v F = m_i * a F_g = m_g * g F_v = b * v F_v =6* pi * eta * r * v m_g = m_i m_i * a = m_g * g - b * v rho = m_i / V tau_g = m_g / b tau_i = m_i / b V =4* pi * r ^3/3 v_x = v_0x *exp(- t / tau ) v_y = g * tau + ( v_0y - g * tau )*e^(- t / tau ) x = x_0 + v_0x * tau *(1-e^(- t / tau )) y = y_0 + tau * g * t + tau *( v_0y - g * tau )*(1-e^(- t / tau )) tau = 2* r ^2* rho /(9 * eta )tauv_xv_ybrhoetaFgF_gm_gm_iv_0xx_0y_0v_0yapixyr_ervtF_vetatau_gtau_iV

Calculations

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

Variable Given Calculate Target : Equation To be used
b = 6* pi * eta * r F = F_g - F_v F = m_i * a F_g = m_g * g F_v = b * v F_v =6* pi * eta * r * v m_g = m_i m_i * a = m_g * g - b * v rho = m_i / V tau_g = m_g / b tau_i = m_i / b V =4* pi * r ^3/3 v_x = v_0x *exp(- t / tau ) v_y = g * tau + ( v_0y - g * tau )*e^(- t / tau ) x = x_0 + v_0x * tau *(1-e^(- t / tau )) y = y_0 + tau * g * t + tau *( v_0y - g * tau )*(1-e^(- t / tau )) tau = 2* r ^2* rho /(9 * eta )tauv_xv_ybrhoetaFgF_gm_gm_iv_0xx_0y_0v_0yapixyr_ervtF_vetatau_gtau_iV




Equations

#
Equation

b \equiv 6 \pi \eta r

b = 6* pi * eta * r


F = F_g - F_v

F = F_g - F_v


F = m_i a

F = m_i * a


F_g = m_g g

F_g = m_g * g


F_v = b v

F_v = b * v


F_v =6 \pi \eta r v

F_v =6* pi * eta * r * v


m_g = m_i

m_g = m_i


m_i a = m_g g - b v

m_i * a = m_g * g - b * v


\rho \equiv\displaystyle\frac{ m_i }{ V }

rho = M / V


\tau_g \equiv \displaystyle\frac{ m_g }{ b }

tau_g = m_g / b


\tau_i \equiv \displaystyle\frac{ m_i }{ b }

tau_i = m_i / b


V =\displaystyle\frac{4 \pi }{3} r ^3

V =4* pi * r ^3/3


v_x = v_{0x} e^{- t / \tau }

v_x = v_0x *exp(- t / tau )


v_y = g \tau + ( v_{0y} - g \tau )e^{- t / \tau }

v_y = g * tau + ( v_0y - g * tau )*e^(- t / tau )


x = x_0 + v_{0x} \tau (1 - e^{- t / \tau })

x = x_0 + v_0x * tau *(1-e^(- t / tau ))


y = y_0 + \tau g t + \tau ( v_{0y} - g \tau )(1 - e^{- t / \tau })

y = y_0 + tau * g * t + tau *( v_0y - g * tau )*(1-e^(- t / tau ))


\tau = \displaystyle\frac{2 r ^2 \rho }{9 \eta }

tau = 2* r ^2* rho /(9 * eta )

ID:(15542, 0)



Total force of body falling in viscous medium

Equation

>Top, >Model


In the case of a body falling in a viscous medium, the total force, the force with constant mass (F), is equal to the gravitational Force (F_g) minus the viscose force (F_v), so

F = F_g - F_v

F
Force with constant mass
N
9046
F_g
Gravitational Force
N
4977
F_v
Viscose force
N
4979
F_g = m_g * g F_v = b * v rho = m_i / V V =4* pi * r ^3/3 F_v =6* pi * eta * r * v v_x = v_0x *exp(- t / tau ) F = m_i * a m_g = m_i tau = 2* r ^2* rho /(9 * eta ) v_y = g * tau + ( v_0y - g * tau )*e^(- t / tau ) x = x_0 + v_0x * tau *(1-e^(- t / tau )) y = y_0 + tau * g * t + tau *( v_0y - g * tau )*(1-e^(- t / tau )) m_i * a = m_g * g - b * v F = F_g - F_v tau_i = m_i / b tau_g = m_g / b b = 6* pi * eta * r tauv_xv_ybrhoetaFgF_gm_gm_iv_0xx_0y_0v_0yapixyr_ervtF_vetatau_gtau_iV

ID:(15543, 0)



Force case constant mass

Equation

>Top, >Model


In the case where the inertial Mass (m_i) equals the initial mass (m_0),

m_g = m_i



the derivative of momentum will be equal to the mass multiplied by the derivative of the speed (v). Since the derivative of velocity is the instant acceleration (a), we have that the force with constant mass (F) is

F = m_i a

F
Force with constant mass
N
9046
m_i
Inertial Mass
kg
6290
a
Instant acceleration
m/s^2
4972
F_g = m_g * g F_v = b * v rho = m_i / V V =4* pi * r ^3/3 F_v =6* pi * eta * r * v v_x = v_0x *exp(- t / tau ) F = m_i * a m_g = m_i tau = 2* r ^2* rho /(9 * eta ) v_y = g * tau + ( v_0y - g * tau )*e^(- t / tau ) x = x_0 + v_0x * tau *(1-e^(- t / tau )) y = y_0 + tau * g * t + tau *( v_0y - g * tau )*(1-e^(- t / tau )) m_i * a = m_g * g - b * v F = F_g - F_v tau_i = m_i / b tau_g = m_g / b b = 6* pi * eta * r tauv_xv_ybrhoetaFgF_gm_gm_iv_0xx_0y_0v_0yapixyr_ervtF_vetatau_gtau_iV

Since the moment (p) is defined with the inertial Mass (m_i) and the speed (v),

p = m_i v



If the inertial Mass (m_i) is equal to the initial mass (m_0), then we can derive the momentum with respect to time and obtain the force with constant mass (F):

F=\displaystyle\frac{d}{dt}p=m_i\displaystyle\frac{d}{dt}v=m_ia



Therefore, we conclude that

F = m_i a

ID:(10975, 0)



Gravitational Force

Equation

>Top, >Model


The gravitational Force (F_g) is based on the gravitational mass (m_g) of the object and on a constant reflecting the intensity of gravity at the planet's surface. The latter is identified by the gravitational Acceleration (g), which is equal to 9.8 m/s^2.

Consequently, it is concluded that:

F_g = m_g g

g
Gravitational Acceleration
9.8
m/s^2
5310
F_g
Gravitational Force
N
4977
m_g
Gravitational mass
kg
8762
F_g = m_g * g F_v = b * v rho = m_i / V V =4* pi * r ^3/3 F_v =6* pi * eta * r * v v_x = v_0x *exp(- t / tau ) F = m_i * a m_g = m_i tau = 2* r ^2* rho /(9 * eta ) v_y = g * tau + ( v_0y - g * tau )*e^(- t / tau ) x = x_0 + v_0x * tau *(1-e^(- t / tau )) y = y_0 + tau * g * t + tau *( v_0y - g * tau )*(1-e^(- t / tau )) m_i * a = m_g * g - b * v F = F_g - F_v tau_i = m_i / b tau_g = m_g / b b = 6* pi * eta * r tauv_xv_ybrhoetaFgF_gm_gm_iv_0xx_0y_0v_0yapixyr_ervtF_vetatau_gtau_iV

ID:(3241, 0)



Viscose Force

Equation

>Top, >Model


The simplest form of the viscose force (F_v) is one that is proportional to the the speed (v) of the body, represented by:

F_v = b v

b
Constant of the Viscose Force
kg/s
5312
v
Speed
m/s
6029
F_v
Viscose force
N
4979
F_g = m_g * g F_v = b * v rho = m_i / V V =4* pi * r ^3/3 F_v =6* pi * eta * r * v v_x = v_0x *exp(- t / tau ) F = m_i * a m_g = m_i tau = 2* r ^2* rho /(9 * eta ) v_y = g * tau + ( v_0y - g * tau )*e^(- t / tau ) x = x_0 + v_0x * tau *(1-e^(- t / tau )) y = y_0 + tau * g * t + tau *( v_0y - g * tau )*(1-e^(- t / tau )) m_i * a = m_g * g - b * v F = F_g - F_v tau_i = m_i / b tau_g = m_g / b b = 6* pi * eta * r tauv_xv_ybrhoetaFgF_gm_gm_iv_0xx_0y_0v_0yapixyr_ervtF_vetatau_gtau_iV



The proportionality constant, also known as the constant of the Viscose Force (b), generally depends on the shape of the object and the viscosity of the medium through which it moves. An example of this type of force is the one exerted by a fluid stream on a spherical body, whose mathematical expression is known as Stokes' law.

ID:(3243, 0)



Stokes force

Equation

>Top, >Model


The resistance is defined in terms of the fluid viscosity and the sphere's velocity as follows:

F_v = b v



Stokes explicitly calculated the resistance experienced by the sphere and determined that viscosity is proportional to the sphere's radius and its velocity, leading to the following equation for resistance:

F_v =6 \pi \eta r v

\pi
Pi
3.1415927
rad
5057
r
Radius of a sphere
m
10331
v
Speed
m/s
6029
F_v
Viscose force
N
4979
\eta
Viscosity
Pa s
5422
F_g = m_g * g F_v = b * v rho = m_i / V V =4* pi * r ^3/3 F_v =6* pi * eta * r * v v_x = v_0x *exp(- t / tau ) F = m_i * a m_g = m_i tau = 2* r ^2* rho /(9 * eta ) v_y = g * tau + ( v_0y - g * tau )*e^(- t / tau ) x = x_0 + v_0x * tau *(1-e^(- t / tau )) y = y_0 + tau * g * t + tau *( v_0y - g * tau )*(1-e^(- t / tau )) m_i * a = m_g * g - b * v F = F_g - F_v tau_i = m_i / b tau_g = m_g / b b = 6* pi * eta * r tauv_xv_ybrhoetaFgF_gm_gm_iv_0xx_0y_0v_0yapixyr_ervtF_vetatau_gtau_iV

ID:(4871, 0)



Stokes force factor

Equation

>Top, >Model


In the case of the Stokes force in the viscose force (F_v), it is modeled with the constant of the Viscose Force (b) and the speed (v),

F_v = b v



which corresponds to a value of the constant of the Viscose Force (b) that, with the viscosity (\eta) and the radio de la Gota (r), is equal to

b \equiv 6 \pi \eta r

b
Constant of the Viscose Force
kg/s
5312
\eta
Environment viscosity
Pa s
10068
\pi
Pi
3.1415927
rad
5057
r
Radius of a sphere
m
10331
F_g = m_g * g F_v = b * v rho = m_i / V V =4* pi * r ^3/3 F_v =6* pi * eta * r * v v_x = v_0x *exp(- t / tau ) F = m_i * a m_g = m_i tau = 2* r ^2* rho /(9 * eta ) v_y = g * tau + ( v_0y - g * tau )*e^(- t / tau ) x = x_0 + v_0x * tau *(1-e^(- t / tau )) y = y_0 + tau * g * t + tau *( v_0y - g * tau )*(1-e^(- t / tau )) m_i * a = m_g * g - b * v F = F_g - F_v tau_i = m_i / b tau_g = m_g / b b = 6* pi * eta * r tauv_xv_ybrhoetaFgF_gm_gm_iv_0xx_0y_0v_0yapixyr_ervtF_vetatau_gtau_iV

ID:(15554, 0)



Equation of motion falling in a viscous medium

Equation

>Top, >Model


The force with constant mass (F) equals the gravitational Force (F_g) minus the viscose force (F_v) so that:

F = F_g - F_v



This relation allows establishing the motion equation for the instant acceleration (a) with ($$) falling due to Earth's gravity with the gravitational Acceleration (g), and with ($$), in the constant of the Viscose Force (b), it will take the form of:

m_i a = m_g g - b v

b
Constant of the Viscose Force
kg/s
5312
g
Gravitational Acceleration
9.8
m/s^2
5310
m_g
Gravitational mass
kg
8762
m_i
Inertial Mass
kg
6290
a
Instant acceleration
m/s^2
4972
v
Speed
m/s
6029
F_g = m_g * g F_v = b * v rho = m_i / V V =4* pi * r ^3/3 F_v =6* pi * eta * r * v v_x = v_0x *exp(- t / tau ) F = m_i * a m_g = m_i tau = 2* r ^2* rho /(9 * eta ) v_y = g * tau + ( v_0y - g * tau )*e^(- t / tau ) x = x_0 + v_0x * tau *(1-e^(- t / tau )) y = y_0 + tau * g * t + tau *( v_0y - g * tau )*(1-e^(- t / tau )) m_i * a = m_g * g - b * v F = F_g - F_v tau_i = m_i / b tau_g = m_g / b b = 6* pi * eta * r tauv_xv_ybrhoetaFgF_gm_gm_iv_0xx_0y_0v_0yapixyr_ervtF_vetatau_gtau_iV

ID:(14495, 0)



Mass and Density

Equation

>Top, >Model


The density (\rho) is defined as the ratio between the mass (M) and the volume (V), expressed as:

\rho \equiv\displaystyle\frac{ m_i }{ V }

\rho \equiv\displaystyle\frac{ M }{ V }

\rho
Density
kg/m^3
5342
M
m_i
Inertial Mass
kg
6290
V
V
Volume of a sphere
m^3
10330
F_g = m_g * g F_v = b * v rho = m_i / V V =4* pi * r ^3/3 F_v =6* pi * eta * r * v v_x = v_0x *exp(- t / tau ) F = m_i * a m_g = m_i tau = 2* r ^2* rho /(9 * eta ) v_y = g * tau + ( v_0y - g * tau )*e^(- t / tau ) x = x_0 + v_0x * tau *(1-e^(- t / tau )) y = y_0 + tau * g * t + tau *( v_0y - g * tau )*(1-e^(- t / tau )) m_i * a = m_g * g - b * v F = F_g - F_v tau_i = m_i / b tau_g = m_g / b b = 6* pi * eta * r tauv_xv_ybrhoetaFgF_gm_gm_iv_0xx_0y_0v_0yapixyr_ervtF_vetatau_gtau_iV

This property is specific to the material in question.

ID:(3704, 0)



Sphere volume

Equation

>Top, >Model


The volume of a sphere (V) for a sphere with ($$) is calculated using the following formula:

V =\displaystyle\frac{4 \pi }{3} r ^3

\pi
Pi
3.1415927
rad
5057
r
Radius of a sphere
m
10331
V
Volume of a sphere
m^3
10330
F_g = m_g * g F_v = b * v rho = m_i / V V =4* pi * r ^3/3 F_v =6* pi * eta * r * v v_x = v_0x *exp(- t / tau ) F = m_i * a m_g = m_i tau = 2* r ^2* rho /(9 * eta ) v_y = g * tau + ( v_0y - g * tau )*e^(- t / tau ) x = x_0 + v_0x * tau *(1-e^(- t / tau )) y = y_0 + tau * g * t + tau *( v_0y - g * tau )*(1-e^(- t / tau )) m_i * a = m_g * g - b * v F = F_g - F_v tau_i = m_i / b tau_g = m_g / b b = 6* pi * eta * r tauv_xv_ybrhoetaFgF_gm_gm_iv_0xx_0y_0v_0yapixyr_ervtF_vetatau_gtau_iV

ID:(4445, 0)



Equality of inertial and gravitational mass

Equation

>Top, >Model


The masses that Newton used in his principles are related to the inertia of bodies, which leads to the concept of the inertial Mass (m_i).

Newton's law, which is linked to the force between bodies due to their masses, is related to gravity, hence known as the gravitational mass (m_g).

Empirically, it has been concluded that both masses are equivalent, and therefore, we define

m_g = m_i

m_g
Gravitational mass
kg
8762
m_i
Inertial Mass
kg
6290
F_g = m_g * g F_v = b * v rho = m_i / V V =4* pi * r ^3/3 F_v =6* pi * eta * r * v v_x = v_0x *exp(- t / tau ) F = m_i * a m_g = m_i tau = 2* r ^2* rho /(9 * eta ) v_y = g * tau + ( v_0y - g * tau )*e^(- t / tau ) x = x_0 + v_0x * tau *(1-e^(- t / tau )) y = y_0 + tau * g * t + tau *( v_0y - g * tau )*(1-e^(- t / tau )) m_i * a = m_g * g - b * v F = F_g - F_v tau_i = m_i / b tau_g = m_g / b b = 6* pi * eta * r tauv_xv_ybrhoetaFgF_gm_gm_iv_0xx_0y_0v_0yapixyr_ervtF_vetatau_gtau_iV

Einstein was the one who questioned this equality and, from that doubt, understood why both 'appear' equal in his theory of gravity. In his argument, Einstein explained that masses deform space, and this deformation of space causes a change in the behavior of bodies. Thus, masses turn out to be equivalent. The revolutionary concept of space curvature implies that even light, which lacks mass, is affected by celestial bodies, contradicting Newton's theory of gravitation. This was experimentally demonstrated by studying the behavior of light during a solar eclipse. In this situation, light beams are deflected due to the presence of the sun, allowing stars behind it to be observed.

ID:(12552, 0)



Characteristic time of the Stokes equation

Equation

>Top, >Model


With the Stokes model, the viscous resistance the constant of the Viscose Force (b), which depends on the radio de la Gota (r) and the environment viscosity (\eta), is calculated as:

b \equiv 6 \pi \eta r



This leads to the viscosity time and inertial mass (\tau_i) and the viscosity time and gravitational mass (\tau_g) assuming equal values the adaptation time (\tau), which are calculated with the density (\rho) as follows:

\tau = \displaystyle\frac{2 r ^2 \rho }{9 \eta }

\tau
Adaptation time
s
10071
\rho
Density
kg/m^3
5342
\eta
Environment viscosity
Pa s
10068
r_e
Radio of the Sphere
m
5321
F_g = m_g * g F_v = b * v rho = m_i / V V =4* pi * r ^3/3 F_v =6* pi * eta * r * v v_x = v_0x *exp(- t / tau ) F = m_i * a m_g = m_i tau = 2* r ^2* rho /(9 * eta ) v_y = g * tau + ( v_0y - g * tau )*e^(- t / tau ) x = x_0 + v_0x * tau *(1-e^(- t / tau )) y = y_0 + tau * g * t + tau *( v_0y - g * tau )*(1-e^(- t / tau )) m_i * a = m_g * g - b * v F = F_g - F_v tau_i = m_i / b tau_g = m_g / b b = 6* pi * eta * r tauv_xv_ybrhoetaFgF_gm_gm_iv_0xx_0y_0v_0yapixyr_ervtF_vetatau_gtau_iV

If the characteristic time is defined as

\tau=\displaystyle\frac{m_i}{b}



and the coefficient of viscous force is

b=6\pi r\eta



On the other hand, considering that

\rho \equiv\displaystyle\frac{ m_i }{ V }



and

V =\displaystyle\frac{4 \pi }{3} r ^3



it follows that the mass is

m_i = \rho V = \displaystyle\frac{4\pi}{3} r^3 \rho



which leads to

\tau = \displaystyle\frac{m_i}{b}=\displaystyle\frac{2 \rho r^2}{9\eta}



in other words,

\tau = \displaystyle\frac{2 r ^2 \rho }{9 \eta }

ID:(14465, 0)



Gravitational mass time and viscosity

Equation

>Top, >Model


With the equation of motion of a body in a viscous medium, we have the derivative of the speed (v) at the time (t) with the inertial Mass (m_i), the gravitational mass (m_g), the constant of the Viscose Force (b) and the gravitational Acceleration (g):

m_i \displaystyle\frac{dv}{dt} = - b v



This defines the viscosity time and gravitational mass (\tau_g) as:

\tau_g \equiv \displaystyle\frac{ m_g }{ b }

b
Constant of the Viscose Force
kg/s
5312
m_g
Gravitational mass
kg
8762
\tau_g
Viscosity time and gravitational mass
s
10329
F_g = m_g * g F_v = b * v rho = m_i / V V =4* pi * r ^3/3 F_v =6* pi * eta * r * v v_x = v_0x *exp(- t / tau ) F = m_i * a m_g = m_i tau = 2* r ^2* rho /(9 * eta ) v_y = g * tau + ( v_0y - g * tau )*e^(- t / tau ) x = x_0 + v_0x * tau *(1-e^(- t / tau )) y = y_0 + tau * g * t + tau *( v_0y - g * tau )*(1-e^(- t / tau )) m_i * a = m_g * g - b * v F = F_g - F_v tau_i = m_i / b tau_g = m_g / b b = 6* pi * eta * r tauv_xv_ybrhoetaFgF_gm_gm_iv_0xx_0y_0v_0yapixyr_ervtF_vetatau_gtau_iV

ID:(15549, 0)



Horizontal speed in viscous medium

Equation

>Top, >Model


In the scenario of horizontal motion, the sphere encounters resistance solely from the viscosity of the surrounding medium, which can be quantified by the equation involving the speed (v) with the initial Speed (v_0), the viscosity time and inertial mass (\tau_i), and the time (t):

v = v_0 e^{- t / \tau_i }



Consequently, the interaction among these elements leads to the observation that the component x of velocity (v_x) with the initial horizontal speed (v_{0x}), the adaptation time (\tau), and the time (t):

v_x = v_{0x} e^{- t / \tau }

\tau
Adaptation time
s
10071
v_x
Component x of velocity
m/s
7118
v_{0x}
Initial horizontal speed
m/s
8427
t
Time
s
5264
F_g = m_g * g F_v = b * v rho = m_i / V V =4* pi * r ^3/3 F_v =6* pi * eta * r * v v_x = v_0x *exp(- t / tau ) F = m_i * a m_g = m_i tau = 2* r ^2* rho /(9 * eta ) v_y = g * tau + ( v_0y - g * tau )*e^(- t / tau ) x = x_0 + v_0x * tau *(1-e^(- t / tau )) y = y_0 + tau * g * t + tau *( v_0y - g * tau )*(1-e^(- t / tau )) m_i * a = m_g * g - b * v F = F_g - F_v tau_i = m_i / b tau_g = m_g / b b = 6* pi * eta * r tauv_xv_ybrhoetaFgF_gm_gm_iv_0xx_0y_0v_0yapixyr_ervtF_vetatau_gtau_iV

ID:(6844, 0)



Viscous medium horizontal position

Equation

>Top, >Model


Within the context of horizontal motion, the position is obtained by integrating the velocity, resulting in an equation involving the position (s) with the starting position (s_0), the initial Speed (v_0), the viscosity time and gravitational mass (\tau_g), the viscosity time and inertial mass (\tau_i), the gravitational Acceleration (g), and the time (t):

s = s_0 + v_0 \tau_i (1 - e^{- t / \tau_i })



From this equation, we arrive at the horizontal displacement equation for the initial position on the x-axis (x_0), the initial horizontal speed (v_{0x}), the adaptation time (\tau), and the time (t):

x = x_0 + v_{0x} \tau (1 - e^{- t / \tau })

\tau
Adaptation time
s
10071
v_{0x}
Initial horizontal speed
m/s
8427
x_0
Initial position on the x-axis
m
10073
x
Position on the x-axis
m
6638
t
Time
s
5264
F_g = m_g * g F_v = b * v rho = m_i / V V =4* pi * r ^3/3 F_v =6* pi * eta * r * v v_x = v_0x *exp(- t / tau ) F = m_i * a m_g = m_i tau = 2* r ^2* rho /(9 * eta ) v_y = g * tau + ( v_0y - g * tau )*e^(- t / tau ) x = x_0 + v_0x * tau *(1-e^(- t / tau )) y = y_0 + tau * g * t + tau *( v_0y - g * tau )*(1-e^(- t / tau )) m_i * a = m_g * g - b * v F = F_g - F_v tau_i = m_i / b tau_g = m_g / b b = 6* pi * eta * r tauv_xv_ybrhoetaFgF_gm_gm_iv_0xx_0y_0v_0yapixyr_ervtF_vetatau_gtau_iV

ID:(14467, 0)



Inertial mass time and viscosity

Equation

>Top, >Model


With the equation of motion of a body in a viscous medium, we have the derivative of the speed (v) at the time (t) with the constant of the Viscose Force (b) and the gravitational Acceleration (g):

m_i \displaystyle\frac{dv}{dt} = - b v



This defines the viscosity time and inertial mass (\tau_i) as:

\tau_i \equiv \displaystyle\frac{ m_i }{ b }

b
Constant of the Viscose Force
kg/s
5312
m_i
Inertial Mass
kg
6290
\tau_i
Viscosity time and inertial mass
s
10328
F_g = m_g * g F_v = b * v rho = m_i / V V =4* pi * r ^3/3 F_v =6* pi * eta * r * v v_x = v_0x *exp(- t / tau ) F = m_i * a m_g = m_i tau = 2* r ^2* rho /(9 * eta ) v_y = g * tau + ( v_0y - g * tau )*e^(- t / tau ) x = x_0 + v_0x * tau *(1-e^(- t / tau )) y = y_0 + tau * g * t + tau *( v_0y - g * tau )*(1-e^(- t / tau )) m_i * a = m_g * g - b * v F = F_g - F_v tau_i = m_i / b tau_g = m_g / b b = 6* pi * eta * r tauv_xv_ybrhoetaFgF_gm_gm_iv_0xx_0y_0v_0yapixyr_ervtF_vetatau_gtau_iV

ID:(15548, 0)



Vertical velocity in a viscous medium under gravity

Equation

>Top, >Model


In the context of vertical motion, the sphere faces a dual resistance: on one hand, the viscosity of the surrounding medium, and on the other, gravity pulling it downward. The latter can be quantified by the equation in the speed (v) with the initial Speed (v_0), the viscosity time and gravitational mass (\tau_g), the viscosity time and inertial mass (\tau_i), the gravitational Acceleration (g), and the time (t):

v = g \tau_g + ( v_0 - g \tau_g )e^{- t / \tau_i }



Assuming gravitational mass and inertial mass are identical, we obtain the function for the component y of velocity (v_y) with the initial vertical speed (v_{0y}), the adaptation time (\tau), the gravitational Acceleration (g), and the time (t):

v_y = g \tau + ( v_{0y} - g \tau )e^{- t / \tau }

\tau
Adaptation time
s
10071
v_y
Component y of velocity
m/s
7119
g
Gravitational Acceleration
9.8
m/s^2
5310
v_{0y}
Initial vertical speed
m/s
8428
t
Time
s
5264
F_g = m_g * g F_v = b * v rho = m_i / V V =4* pi * r ^3/3 F_v =6* pi * eta * r * v v_x = v_0x *exp(- t / tau ) F = m_i * a m_g = m_i tau = 2* r ^2* rho /(9 * eta ) v_y = g * tau + ( v_0y - g * tau )*e^(- t / tau ) x = x_0 + v_0x * tau *(1-e^(- t / tau )) y = y_0 + tau * g * t + tau *( v_0y - g * tau )*(1-e^(- t / tau )) m_i * a = m_g * g - b * v F = F_g - F_v tau_i = m_i / b tau_g = m_g / b b = 6* pi * eta * r tauv_xv_ybrhoetaFgF_gm_gm_iv_0xx_0y_0v_0yapixyr_ervtF_vetatau_gtau_iV

ID:(14466, 0)



Viscous medium vertical position under gravitation

Equation

>Top, >Model


In the context of vertical motion, the position is obtained by integrating velocity, resulting in an equation involving the position (s) with the starting position (s_0), the initial Speed (v_0), the viscosity time and gravitational mass (\tau_g), the viscosity time and inertial mass (\tau_i), the gravitational Acceleration (g), and the time (t):

s = s_0 + g \tau_g t +( v_0 - g \tau_g ) \tau_i (1 - e^{- t / \tau_i })



From this equation, we arrive at the equation for vertical displacement for the position on the y-axis (y) with the initial position on the y-axis (y_0), the initial horizontal speed (v_{0x}), the adaptation time (\tau), and the time (t):

y = y_0 + \tau g t + \tau ( v_{0y} - g \tau )(1 - e^{- t / \tau })

\tau
Adaptation time
s
10071
g
Gravitational Acceleration
9.8
m/s^2
5310
y_0
Initial position on the y-axis
m
10074
v_{0y}
Initial vertical speed
m/s
8428
y
Position on the y-axis
m
8429
t
Time
s
5264
F_g = m_g * g F_v = b * v rho = m_i / V V =4* pi * r ^3/3 F_v =6* pi * eta * r * v v_x = v_0x *exp(- t / tau ) F = m_i * a m_g = m_i tau = 2* r ^2* rho /(9 * eta ) v_y = g * tau + ( v_0y - g * tau )*e^(- t / tau ) x = x_0 + v_0x * tau *(1-e^(- t / tau )) y = y_0 + tau * g * t + tau *( v_0y - g * tau )*(1-e^(- t / tau )) m_i * a = m_g * g - b * v F = F_g - F_v tau_i = m_i / b tau_g = m_g / b b = 6* pi * eta * r tauv_xv_ybrhoetaFgF_gm_gm_iv_0xx_0y_0v_0yapixyr_ervtF_vetatau_gtau_iV

ID:(14468, 0)