Column casting in laminar form

Storyboard

It is considered a column with water with a hole in its lower part. The emptying is monitored obtaining an output speed depending on the height of the column.

If the data is modeled with Bernoulli but the exit through the hole is modeled with Hagen Poiseville, which corrects the problem of the case in which it was assumed without viscosity.

>Model

ID:(1428, 0)



Mechanisms

Iframe

>Top



Code
Concept

Mechanisms

ID:(15492, 0)



Liquid column exit velocity

Description

>Top


If there is a column height ($h$) of liquid with the liquid density ($\rho_w$) under the effect of gravity, using the gravitational Acceleration ($g$), the variación de la Presión ($\Delta p$) is generated according to:

$ \Delta p = \rho_w g h $



This the variación de la Presión ($\Delta p$) produces a flow through the outlet tube with the tube length ($\Delta L$), the tube radius ($R$), and the viscosity ($\eta$) of a volume flow 1 ($J_{V1}$) according to the Hagen-Poiseuille law:

$ J_{V2} =-\displaystyle\frac{ \pi R ^4}{8 \eta }\displaystyle\frac{ \Delta p }{ \Delta L }$



Since this equation includes the section in point 2 ($S_2$), the flux density 2 ($j_{s2}$) can be calculated using:

$ j_s = \displaystyle\frac{ J_V }{ S }$



With this, we obtain:

$ j_{s2} = \displaystyle\frac{ \rho_w g R ^2}{8 \eta \Delta L } h $



which corresponds to an average velocity.

To model the system, the key parameters are:

• Interior diameter of the container: 93 mm

• Interior diameter of the evacuation channel: 3.2 mm

• Length of the evacuation channel: 18 mm

The initial liquid height is 25 cm.

ID:(9870, 0)



Decrease in the level of the liquid column

Description

>Top


If we analyze the equation

$ j_{s2} = \displaystyle\frac{ \rho_w g R ^2}{8 \eta \Delta L } h $



which describes the application of Hagen-Poiseuille, we observe that the curve only matches the experimental data under the following conditions:

The velocity is low (when the column is nearly empty).

The radius of the evacuation channel must be reduced from 1.5 mm to 0.6 mm.

This shows that the flow is primarily turbulent and that only at low velocity levels is the velocity low enough for the Reynolds number to be low and the flow to be laminar.

ID:(11065, 0)



Column Emptying Experiment: Height and Reach

Description

>Top


If the Tracker program is used, the height of the meniscus of the column and the range of the jet can be measured. The relationship between the two is shown in the following graph:

Reach [m] vs Height [m]

The recorded data, which can be downloaded as an Excel table from the following link excel table, are as follows:

Time [s]Height [m]Reach [m]
02.23E-011.89E-01
42.14E-011.86E-01
82.04E-011.82E-01
121.94E-011.77E-01
161.86E-011.72E-01
201.79E-011.68E-01
241.71E-011.66E-01
281.63E-011.62E-01
321.54E-011.58E-01
361.46E-011.52E-01
401.39E-011.48E-01
441.32E-011.44E-01
481.24E-011.39E-01
521.18E-011.35E-01
561.11E-011.31E-01
601.06E-011.27E-01
649.88E-021.23E-01
689.29E-021.18E-01
728.70E-021.15E-01
768.11E-021.12E-01
807.52E-021.06E-01
847.12E-021.02E-01
886.51E-029.69E-02
926.00E-029.42E-02
965.58E-028.94E-02
1005.09E-028.52E-02
1044.70E-028.13E-02
1084.34E-027.63E-02
1123.97E-027.22E-02
1163.49E-026.79E-02
1203.15E-026.28E-02
1242.91E-025.96E-02
1282.58E-025.33E-02
1322.23E-024.92E-02
1361.98E-024.31E-02
1401.71E-023.85E-02
1441.54E-023.38E-02
1481.28E-022.85E-02
1521.11E-022.23E-02
1569.17E-031.54E-02
1607.15E-037.95E-03

Note: E indicates scientific notation (ej. 1.2E+3 = 1.2x10^3 = 1200, y 1.2E-3 = 1.2x10^-3 = 0.0012)

ID:(11062, 0)



Model

Top

>Top



Parameters

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$\tau_{hp}$
tau_hp
Characteristic time column with Hagen Pouseuille
s
$g$
g
Gravitational Acceleration
m/s^2
$\rho_w$
rho_w
Liquid density
kg/m^3
$\pi$
pi
Pi
rad
$R$
R
Tube radius
m
$\Delta p$
Dp
Variación de la Presión
Pa
$\eta$
eta
Viscosity
Pa s

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$h$
h
Column height
m
$r$
r
Disc radius
m
$j_{s1}$
j_s1
Flux density 1
m/s
$j_{s2}$
j_s2
Flux density 2
m/s
$h_0$
h_0
Initial height of liquid column
m
$S_1$
S_1
Section in point 1
m^2
$S_2$
S_2
Section in point 2
m^2
$t$
t
Time
s
$\Delta t$
Dt
Time elapsed
s
$\Delta s$
Ds
Tube element
m
$\Delta L$
DL
Tube length
m
$J_{V1}$
J_V1
Volume flow 1
m^3/s
$J_{V2}$
J_V2
Volume flow 2
m^3/s

Calculations


First, select the equation: to , then, select the variable: to

Calculations

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

Variable Given Calculate Target : Equation To be used




Equations

#
Equation

$ j_{s2} = \displaystyle\frac{ \rho_w g R ^2}{8 \eta \Delta L } h $

j_s = rho_w * g * R ^2* h /(8* eta * l )


$ \Delta p = \rho_w g h $

Dp = rho_w * g * Dh


$h = h_0 e^{-t/\tau_{hp}}$

h = h_0 *exp(- t / tau_hp )


$ j_{s1} =\displaystyle\frac{ \Delta s }{ \Delta t }$

j_s = Ds / Dt


$ j_{s1} = \displaystyle\frac{ J_{V1} }{ S_1 }$

j_s = J_V / S


$ j_{s2} = \displaystyle\frac{ J_{V2} }{ S_2 }$

j_s = J_V / S


$ J_{V2} =-\displaystyle\frac{ \pi R ^4}{8 \eta }\displaystyle\frac{ \Delta p }{ \Delta L }$

J_V =- pi * R ^4* Dp /(8* eta * DL )


$ J_{V1} = J_{V2} $

J_V1 = J_V2


$ S_1 = \pi r ^2$

S = pi * r ^2


$ S_2 = \pi R ^2$

S = pi * r ^2


$ S_1 j_{s1} = S_2 j_{s2} $

S_1 * j_s1 = S_2 * j_s2


$ \tau_{hp} = \displaystyle\frac{S \Delta L}{\pi R^4}\displaystyle\frac{8 \eta}{\rho g}$

tau_hp = (8* eta * DL * S )/( pi * R ^4 * rho * g * h )

ID:(15494, 0)



Characteristic time column with viscous liquid

Equation

>Top, >Model


The characteristic time column with Hagen Pouseuille ($\tau_{hp}$) is calculated from the gravitational Acceleration ($g$), the liquid density ($\rho_w$), the tube length ($\Delta L$), the tube radius ($R$), the section in point 2 ($S_2$), and the viscosity ($\eta$) using:

$ \tau_{hp} = \displaystyle\frac{S \Delta L}{\pi R^4}\displaystyle\frac{8 \eta}{\rho g}$

$\tau_{hp}$
Characteristic time column with Hagen Pouseuille
$s$
10087
$g$
Gravitational Acceleration
9.8
$m/s^2$
5310
$\rho_w$
Liquid density
$kg/m^3$
5407
$\pi$
Pi
3.1415927
$rad$
5057
$S$
$S_2$
Section in point 2
$m^2$
5413
$\Delta L$
Tube length
$m$
5430
$R$
Tube radius
$m$
5417
$\eta$
Viscosity
$Pa s$
5422

ID:(14521, 0)



Column emptying experiment: Model with Hagen Poiseuille

Equation

>Top, >Model


Given the model for the flow of a viscous liquid through a tube, and considering that the height of the column determines the pressure, we can estimate the flux density ($j_s$) as a function of the column height ($h$), using the gravitational Acceleration ($g$), the liquid density ($\rho_w$), the tube length ($\Delta L$), the tube radius ($R$), and the viscosity ($\eta$) through:

$ j_{s2} = \displaystyle\frac{ \rho_w g R ^2}{8 \eta \Delta L } h $

$ j_s = \displaystyle\frac{ \rho_w g R ^2}{8 \eta \Delta L } h $

$h$
Column height
$m$
5406
$j_s$
$j_{s2}$
Flux density 2
$m/s$
10289
$g$
Gravitational Acceleration
9.8
$m/s^2$
5310
$\rho_w$
Liquid density
$kg/m^3$
5407
$\Delta L$
Tube length
$m$
5430
$R$
Tube radius
$m$
5417
$\eta$
Viscosity
$Pa s$
5422

If we consider that the drainage channel presents hydraulic resistance, we can model it using the Hagen-Poiseuille equation:

$ J_{V2} =-\displaystyle\frac{ \pi R ^4}{8 \eta }\displaystyle\frac{ \Delta p }{ \Delta L }$



where the pressure difference is determined by the water column:

$ p = \rho_w g h $



and the velocity is obtained through the flow:

$ j_s = \displaystyle\frac{ J_V }{ S }$



In this way, we obtain the relationship for calculating the velocity as a function of height:

$ j_s = \displaystyle\frac{ \rho_w g R ^2}{8 \eta \Delta L } h $

ID:(11064, 0)



Temporal evolution of the viscous liquid column

Equation

>Top, >Model


The column height ($h$), as a function of the time ($t$), exhibits an exponential behavior involving the initial height of liquid column ($h_0$) and the characteristic time column with Hagen Pouseuille ($\tau_{hp}$):

$h = h_0 e^{-t/\tau_{hp}}$

$\tau_{hp}$
Characteristic time column with Hagen Pouseuille
$s$
10087
$h$
Column height
$m$
5406
$h_0$
Initial height of liquid column
$m$
10085
$t$
Time
$s$
5264

If in the equation

$ S \displaystyle\frac{dh}{dt} = - \displaystyle\frac{\pi R^4}{\Delta L}\displaystyle\frac{\rho g}{8 \eta} h $



the constants are replaced by

$ \tau_{hp} = \displaystyle\frac{S \Delta L}{\pi R^4}\displaystyle\frac{8 \eta}{\rho g}$



we obtain the first-order linear differential equation

$\displaystyle\frac{dh}{dt}=\displaystyle\frac{1}{\tau_{hp}} h$



whose solution is

$h = h_0 e^{-t/\tau_{hp}}$

ID:(14522, 0)



Volume conservation

Equation

>Top, >Model


One of the most basic laws in physics is the conservation of mass, which holds true throughout our macroscopic world. Only in the microscopic world does a conversion between mass and energy exist, which we will not consider in this case. In the case of a fluid, this means that the mass entering through a pipe must be equal to the mass exiting it.

If density is constant, the same applies to volume. In such cases, when we treat the flow as an incompressible fluid, it means that a given volume entering one end of the pipe must exit the other end. This can be expressed as the equality between the flow in Position 1 ($J_1$) and the flow in Position 2 ($J_2$), with the equation:

$ J_{V1} = J_{V2} $

$J_{V1}$
Volume flow 1
$m^3/s$
8478
$J_{V2}$
Volume flow 2
$m^3/s$
8479

ID:(939, 0)



Continuity by section

Equation

>Top, >Model


The principle of continuity dictates that the flow at the first point, which is equal to the flux density 1 ($j_{s1}$) times the section in point 1 ($S_1$), must be equal to the flow at the second point, given by the flux density 2 ($j_{s2}$) times the section in point 2 ($S_2$). From this, it follows that:

$ S_1 j_{s1} = S_2 j_{s2} $

$j_{s1}$
Flux density 1
$m/s$
10288
$j_{s2}$
Flux density 2
$m/s$
10289
$S_1$
Section in point 1
$m^2$
5257
$S_2$
Section in point 2
$m^2$
5413

ID:(4350, 0)



Average flow density

Equation

>Top, >Model


The flux density ($j_s$) is related to the distance traveled in a time ($\Delta s$), which is the distance that the fluid travels in the time elapsed ($\Delta t$), as follows:

$ j_{s1} =\displaystyle\frac{ \Delta s }{ \Delta t }$

$ j_s =\displaystyle\frac{ \Delta s }{ \Delta t }$

$j_s$
$j_{s1}$
Flux density 1
$m/s$
10288
$\Delta t$
Time elapsed
$s$
5103
$\Delta s$
Tube element
$m$
10291

ID:(4348, 0)



Volume Flow and its Speed (1)

Equation

>Top, >Model


A flux density ($j_s$) can be expressed in terms of the volume flow ($J_V$) using the section or Area ($S$) through the following formula:

$ j_{s1} = \displaystyle\frac{ J_{V1} }{ S_1 }$

$ j_s = \displaystyle\frac{ J_V }{ S }$

$j_s$
$j_{s1}$
Flux density 1
$m/s$
10288
$S$
$S_1$
Section in point 1
$m^2$
5257
$J_V$
$J_{V1}$
Volume flow 1
$m^3/s$
8478

Flow is defined as the volume the volume element ($\Delta V$) divided by time the time elapsed ($\Delta t$), which is expressed in the following equation:

$ J_V =\displaystyle\frac{ \Delta V }{ \Delta t }$



and the volume equals the cross-sectional area the section Tube ($S$) multiplied by the distance traveled the tube element ($\Delta s$):

$ \Delta V = S \Delta s $



Since the distance traveled the tube element ($\Delta s$) per unit time the time elapsed ($\Delta t$) corresponds to the velocity, it is represented by:

$ j_{s1} =\displaystyle\frac{ \Delta s }{ \Delta t }$



Thus, the flow is a flux density ($j_s$), which is calculated using:

$ j_s = \displaystyle\frac{ J_V }{ S }$

ID:(4349, 1)



Volume Flow and its Speed (2)

Equation

>Top, >Model


A flux density ($j_s$) can be expressed in terms of the volume flow ($J_V$) using the section or Area ($S$) through the following formula:

$ j_{s2} = \displaystyle\frac{ J_{V2} }{ S_2 }$

$ j_s = \displaystyle\frac{ J_V }{ S }$

$j_s$
$j_{s2}$
Flux density 2
$m/s$
10289
$S$
$S_2$
Section in point 2
$m^2$
5413
$J_V$
$J_{V2}$
Volume flow 2
$m^3/s$
8479

Flow is defined as the volume the volume element ($\Delta V$) divided by time the time elapsed ($\Delta t$), which is expressed in the following equation:

$ J_V =\displaystyle\frac{ \Delta V }{ \Delta t }$



and the volume equals the cross-sectional area the section Tube ($S$) multiplied by the distance traveled the tube element ($\Delta s$):

$ \Delta V = S \Delta s $



Since the distance traveled the tube element ($\Delta s$) per unit time the time elapsed ($\Delta t$) corresponds to the velocity, it is represented by:

$ j_{s1} =\displaystyle\frac{ \Delta s }{ \Delta t }$



Thus, the flow is a flux density ($j_s$), which is calculated using:

$ j_s = \displaystyle\frac{ J_V }{ S }$

ID:(4349, 2)



Hagen Poiseuille Equation

Equation

>Top, >Model


The volume flow ($J_V$) can be calculated with the Hagen-Poiseuille law that with the parameters the viscosity ($\eta$), the pressure difference ($\Delta p$), the tube radius ($R$) and the tube length ($\Delta L$) is:

$ J_{V2} =-\displaystyle\frac{ \pi R ^4}{8 \eta }\displaystyle\frac{ \Delta p }{ \Delta L }$

$ J_V =-\displaystyle\frac{ \pi R ^4}{8 \eta }\displaystyle\frac{ \Delta p }{ \Delta L }$

$\pi$
Pi
3.1415927
$rad$
5057
$\Delta L$
Tube length
$m$
5430
$R$
Tube radius
$m$
5417
$\Delta p$
Variación de la Presión
$Pa$
6673
$\eta$
Viscosity
$Pa s$
5422
$J_V$
$J_{V2}$
Volume flow 2
$m^3/s$
8479

If we consider the profile of speed on a cylinder radio ($v$) for a fluid in a cylindrical channel, where the speed on a cylinder radio ($v$) varies with respect to radius of position in a tube ($r$) according to the following expression:

$ v = v_{max} \left(1-\displaystyle\frac{ r ^2}{ R ^2}\right)$



involving the tube radius ($R$) and the maximum flow rate ($v_{max}$). We can calculate the maximum flow rate ($v_{max}$) using the viscosity ($\eta$), the pressure difference ($\Delta p$), and the tube length ($\Delta L$) as follows:

$ v_{max} =-\displaystyle\frac{ R ^2}{4 \eta }\displaystyle\frac{ \Delta p }{ \Delta L }$



If we integrate the velocity across the cross-section of the channel, we obtain the volume flow ($J_V$), defined as the integral of $\pi r v(r)$ with respect to radius of position in a tube ($r$) from $0$ to tube radius ($R$). This integral can be simplified as follows:

$J_V=-\displaystyle\int_0^Rdr \pi r v(r)=-\displaystyle\frac{R^2}{4\eta}\displaystyle\frac{\Delta p}{\Delta L}\displaystyle\int_0^Rdr \pi r \left(1-\displaystyle\frac{r^2}{R^2}\right)$



The integration yields the resulting Hagen-Poiseuille law:

$ J_V =-\displaystyle\frac{ \pi R ^4}{8 \eta }\displaystyle\frac{ \Delta p }{ \Delta L }$

ID:(3178, 0)



Pressure difference between columns

Equation

>Top, >Model


The height difference, denoted by the height difference ($\Delta h$), implies that the pressure in both columns is distinct. In particular, the pressure difference ($\Delta p$) is a function of the liquid density ($\rho_w$), the gravitational Acceleration ($g$), and the height difference ($\Delta h$), as follows:

$ \Delta p = \rho_w g h $

$ \Delta p = \rho_w g \Delta h $

$g$
Gravitational Acceleration
9.8
$m/s^2$
5310
$\Delta h$
$h$
Column height
$m$
5406
$\rho_w$
Liquid density
$kg/m^3$
5407
$\Delta p$
Variación de la Presión
$Pa$
6673

If there is the pressure difference ($\Delta p$) between two points, as determined by the equation:

$ \Delta p = p_2 - p_1 $



we can utilize the water column pressure ($p$), which is defined as:

$ p_t = p_0 + \rho_w g h $



This results in:

$\Delta p=p_2-p_1=p_0+\rho_wh_2g-p_0-\rho_wh_1g=\rho_w(h_2-h_1)g$



As the height difference ($\Delta h$) is:

$ \Delta h = h_2 - h_1 $



the pressure difference ($\Delta p$) can be expressed as:

$ \Delta p = \rho_w g \Delta h $

ID:(4345, 0)



Surface of a disk (1)

Equation

>Top, >Model


The surface of a disk ($S$) of ($$) is calculated as follows:

$ S_1 = \pi r ^2$

$ S = \pi r ^2$

$r$
Disc radius
$m$
5275
$\pi$
Pi
3.1415927
$rad$
5057
$S$
$S_1$
Section in point 1
$m^2$
5257

ID:(3804, 1)



Surface of a disk (2)

Equation

>Top, >Model


The surface of a disk ($S$) of ($$) is calculated as follows:

$ S_2 = \pi R ^2$

$ S = \pi r ^2$

$r$
$R$
Tube radius
$m$
5417
$\pi$
Pi
3.1415927
$rad$
5057
$S$
$S_2$
Section in point 2
$m^2$
5413

ID:(3804, 2)