Processing math: 0%
User: No user logged in.


Longitudinal waves

Storyboard

>Model

ID:(1885, 0)



Mechanisms

Iframe

>Top



Code
Concept

Mechanisms

ID:(15573, 0)



Longitudinal wave

Image

>Top


In the case of the longitudinal wave, the deformation is in the direction of propagation:

This applies to solids but also to liquids and gases. In the latter case we are not talking about tension but about pressure.

ID:(14184, 0)



Boundary conditions

Image

>Top


The solution to the wave equation

\displaystyle\frac{\partial^2 u}{\partial t^2}= c ^2\displaystyle\frac{\partial^2 u}{\partial x^2}



is of the form

z = z_0 e^{ i( k s - \omega t )}



but it must satisfy the conditions of free or fixed edge. In the edge case

- free wave can move but has no support so the stress and thus the deformation must be zero.
- fixed the wave cannot move but it can generate tension and with it deformation

Graphically, we have

ID:(14186, 0)



Model

Top

>Top



Parameters

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
L
L
Body length
m
\epsilon
epsilon
Deformación
-
E
E
Modulo de elasticidad
Pa
E
E
Modulus of Elasticity
Pa
\sigma
sigma
Tensión
Pa
c
c
Wave speed
m/s

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
\nu_s
nu_s
Longitudinal oscillation frequency free-free or fixed-fixed case
Hz
\nu_a
nu_a
Longitudinal oscillation frequency in free-fixed or fixed-free case
Hz
n_a
n_a
Longitudinal oscillation mode free-fixed or fixed-free case
-
n_s
n_s
Longitudinal oscillation mode free-free or fixed-fixed case
-
\lambda_a
lambda_a
Longitudinal oscillation wave length free-fixed or fixed-free case
m
\lambda_s
lambda_s
Longitudinal oscillation wave length free-free or fixed-fixed case
m
\rho
rho
Mean density
kg/m^3
s
s
Position
m
c
c
Speed of sound
m/s
t
t
Time
s

Calculations


First, select the equation: to , then, select the variable: to
%i * k * z = 0 c ^2 = E / rho lambda_a = 4 * L /(2* n_a + 1) lambda_s = 2* L / n_s nu_a = (2* n_a + 1) * c /(4 * L ) nu_s = n_s * c /(2* L ) s = c * t sigma = E * epsilon z = 0 z = z_0 * exp( %i *( k * s - omega * t ))@DIF( u , t , 2) = c ^2*@DIF( u , x , 2)Lepsilonnu_snu_an_an_slambda_alambda_srhoEEscsigmatc

Calculations

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

Variable Given Calculate Target : Equation To be used
%i * k * z = 0 c ^2 = E / rho lambda_a = 4 * L /(2* n_a + 1) lambda_s = 2* L / n_s nu_a = (2* n_a + 1) * c /(4 * L ) nu_s = n_s * c /(2* L ) s = c * t sigma = E * epsilon z = 0 z = z_0 * exp( %i *( k * s - omega * t ))@DIF( u , t , 2) = c ^2*@DIF( u , x , 2)Lepsilonnu_snu_an_an_slambda_alambda_srhoEEscsigmatc




Equations

#
Equation

i k z = 0

%i * k * z = 0


c ^2 = \displaystyle\frac{ E }{ \rho }

c ^2 = E / rho


\lambda_a = \displaystyle\frac{4 L }{2 n_a + 1}

lambda_a = 4 * L /(2* n_a + 1)


\lambda_s = \displaystyle\frac{2 L }{ n_s }

lambda_s = 2* L / n_s


\nu_a = \displaystyle\frac{2 n_a + 1}{4 L } c

nu_a = (2* n_a + 1) * c /(4 * L )


\nu_s = \displaystyle\frac{ n_s }{2 L } c

nu_s = n_s * c /(2* L )


s = c t

s = c * t


\sigma = E \epsilon

sigma = E * epsilon


z = 0

z = 0


z = z_0 e^{ i( k s - \omega t )}

z = z_0 * exp( %i *( k * s - omega * t ))


\displaystyle\frac{\partial^2 u}{\partial t^2}= c ^2\displaystyle\frac{\partial^2 u}{\partial x^2}

@DIF( u , t , 2) = c ^2*@DIF( u , x , 2)

ID:(15582, 0)



Hooke's law in the continuous limit

Equation

>Top, >Model


The elastic Force (F_k) is a function that depends on the modulus of Elasticity (E), the body Section (S), the elongation (u), and the body length (L).

F_k =\displaystyle\frac{ E S }{ L } u



This function can be rewritten using the definitions of the strain (\sigma) and the deformation (\epsilon), resulting in the continuous version of Hooke's Law:

\sigma = E \epsilon

\epsilon
Deformación
-
8838
E
Modulo de elasticidad
Pa
8843
\sigma
Tensión
Pa
8845
sigma = E * epsilon s = c * t c ^2 = E / rho @DIF( u , t , 2) = c ^2*@DIF( u , x , 2) z = z_0 * exp( %i *( k * s - omega * t )) %i * k * z = 0 z = 0 lambda_s = 2* L / n_s lambda_a = 4 * L /(2* n_a + 1) nu_s = n_s * c /(2* L ) nu_a = (2* n_a + 1) * c /(4 * L )Lepsilonnu_snu_an_an_slambda_alambda_srhoEEscsigmatc

The elastic Force (F_k) is a function that depends on the modulus of Elasticity (E), the body Section (S), the elongation (u), and the body length (L).

F_k =\displaystyle\frac{ E S }{ L } u



This function can be expressed using the definition of the strain (\sigma)

\sigma =\displaystyle\frac{ F }{ S }



and the definition of the deformation (\epsilon)

\epsilon =\displaystyle\frac{ u }{ L }



resulting in

\sigma = E \epsilon

ID:(8100, 0)



Speed of sound

Equation

>Top, >Model


Si se analiza la ecuación de movimiento

\displaystyle\frac{\partial^2 u_i}{\partial t^2}=\displaystyle\frac{ E }{ \rho }\displaystyle\frac{\partial^2 u_i}{\partial x^2}



se descubre que una deformación general del tipo

u = f(x - \sqrt{\displaystyle\frac{E}{\rho}}t)



por lo que se concluye que el factor

\sqrt{\displaystyle\frac{E}{\rho}}



corresponde a la velocidad de propagación que llamamos la velocidad del sonido

c ^2 = \displaystyle\frac{ E }{ \rho }

\rho
Mean density
kg/m^3
5088
E
Modulus of Elasticity
Pa
5357
c
Speed of sound
m/s
5073
sigma = E * epsilon s = c * t c ^2 = E / rho @DIF( u , t , 2) = c ^2*@DIF( u , x , 2) z = z_0 * exp( %i *( k * s - omega * t )) %i * k * z = 0 z = 0 lambda_s = 2* L / n_s lambda_a = 4 * L /(2* n_a + 1) nu_s = n_s * c /(2* L ) nu_a = (2* n_a + 1) * c /(4 * L )Lepsilonnu_snu_an_an_slambda_alambda_srhoEEscsigmatc

ID:(14179, 0)



Wave equation

Equation

>Top, >Model


La ecuación de movimiento

\displaystyle\frac{\partial^2 u_i}{\partial t^2}=\displaystyle\frac{ E }{ \rho }\displaystyle\frac{\partial^2 u_i}{\partial x^2}



con la relación

c ^2 = \displaystyle\frac{ E }{ \rho }



representa la ecuación de onda del solido

\displaystyle\frac{\partial^2 u}{\partial t^2}= c ^2\displaystyle\frac{\partial^2 u}{\partial x^2}

sigma = E * epsilon s = c * t c ^2 = E / rho @DIF( u , t , 2) = c ^2*@DIF( u , x , 2) z = z_0 * exp( %i *( k * s - omega * t )) %i * k * z = 0 z = 0 lambda_s = 2* L / n_s lambda_a = 4 * L /(2* n_a + 1) nu_s = n_s * c /(2* L ) nu_a = (2* n_a + 1) * c /(4 * L )Lepsilonnu_snu_an_an_slambda_alambda_srhoEEscsigmatc

ID:(14180, 0)



Posición del máximo

Equation

>Top, >Model


Como la onda viaja a una velocidad constante, la posición del máximo se puede calcular directamente de esta y el tiempo transcurrido. Por ello con debe ser

s = c t

s
Position
m
9899
t
Time
s
5264
c
Wave speed
m/s
9752
sigma = E * epsilon s = c * t c ^2 = E / rho @DIF( u , t , 2) = c ^2*@DIF( u , x , 2) z = z_0 * exp( %i *( k * s - omega * t )) %i * k * z = 0 z = 0 lambda_s = 2* L / n_s lambda_a = 4 * L /(2* n_a + 1) nu_s = n_s * c /(2* L ) nu_a = (2* n_a + 1) * c /(4 * L )Lepsilonnu_snu_an_an_slambda_alambda_srhoEEscsigmatc

ID:(12377, 0)



General solution of the wave equation

Equation

>Top, >Model


The general solution of the wave equation

\displaystyle\frac{\partial^2 u}{\partial t^2}= c ^2\displaystyle\frac{\partial^2 u}{\partial x^2}



can be written in the complex space as

z = z_0 e^{ i( k s - \omega t )}

ID:(14187, 0)



Fixed edge condition

Equation

>Top, >Model


En el caso de borde fijo el sistema no se puede desplazar por lo que la solución

z = z_0 e^{ i( k s - \omega t )}



debe ser para todo tiempo y en la coordenadas en que está el borde debe ser nula. Esto es

z = 0

sigma = E * epsilon s = c * t c ^2 = E / rho @DIF( u , t , 2) = c ^2*@DIF( u , x , 2) z = z_0 * exp( %i *( k * s - omega * t )) %i * k * z = 0 z = 0 lambda_s = 2* L / n_s lambda_a = 4 * L /(2* n_a + 1) nu_s = n_s * c /(2* L ) nu_a = (2* n_a + 1) * c /(4 * L )Lepsilonnu_snu_an_an_slambda_alambda_srhoEEscsigmatc

ID:(14189, 0)



Free edge condition

Equation

>Top, >Model


En el caso de borde libre el sistema no puede generar tensión por lo que no existe deformación ya que

\sigma = E \epsilon



Como la deformación es igual a la derivada

\epsilon_i =\displaystyle\frac{\partial u_i }{\partial x_i }



se tiene que la derivada de

z = z_0 e^{ i( k s - \omega t )}



para todo tiempo y en la coordenadas en que está el borde debe ser nula. Esto es

i k z = 0

sigma = E * epsilon s = c * t c ^2 = E / rho @DIF( u , t , 2) = c ^2*@DIF( u , x , 2) z = z_0 * exp( %i *( k * s - omega * t )) %i * k * z = 0 z = 0 lambda_s = 2* L / n_s lambda_a = 4 * L /(2* n_a + 1) nu_s = n_s * c /(2* L ) nu_a = (2* n_a + 1) * c /(4 * L )Lepsilonnu_snu_an_an_slambda_alambda_srhoEEscsigmatc

ID:(14188, 0)



Longitudinal frequency of free-free and fixed-fixed oscillation

Equation

>Top, >Model


Como el largo de onda es

\lambda_s = \displaystyle\frac{2 L }{ n_s }



y la frecuencia es

c = \lambda \nu



se tiene que las frecuencias propia y sus armónicos son

\nu_s = \displaystyle\frac{ n_s }{2 L } c

L
Body length
m
5355
\nu_s
Longitudinal oscillation frequency free-free or fixed-fixed case
0
Hz
10016
n_s
Longitudinal oscillation mode free-free or fixed-fixed case
0
-
10021
c
Speed of sound
m/s
5073
sigma = E * epsilon s = c * t c ^2 = E / rho @DIF( u , t , 2) = c ^2*@DIF( u , x , 2) z = z_0 * exp( %i *( k * s - omega * t )) %i * k * z = 0 z = 0 lambda_s = 2* L / n_s lambda_a = 4 * L /(2* n_a + 1) nu_s = n_s * c /(2* L ) nu_a = (2* n_a + 1) * c /(4 * L )Lepsilonnu_snu_an_an_slambda_alambda_srhoEEscsigmatc

ID:(14193, 0)



Longitudinal frequency of oscillation for free-fixed and fixed-free edges

Equation

>Top, >Model


En el caso de la oscilación con bordes libres y fijo o fijos y libre se tiene que el largo de onda debe ser igual a cuatro veces el largo de la cavidad L de la cavidad. Para armónicos superiores

\nu_a = \displaystyle\frac{2 n_a + 1}{4 L } c

L
Body length
m
5355
\nu_a
Longitudinal oscillation frequency in free-fixed or fixed-free case
0
Hz
10017
n_a
Longitudinal oscillation mode free-fixed or fixed-free case
0
-
10020
c
Speed of sound
m/s
5073
sigma = E * epsilon s = c * t c ^2 = E / rho @DIF( u , t , 2) = c ^2*@DIF( u , x , 2) z = z_0 * exp( %i *( k * s - omega * t )) %i * k * z = 0 z = 0 lambda_s = 2* L / n_s lambda_a = 4 * L /(2* n_a + 1) nu_s = n_s * c /(2* L ) nu_a = (2* n_a + 1) * c /(4 * L )Lepsilonnu_snu_an_an_slambda_alambda_srhoEEscsigmatc

ID:(14194, 0)



Free-fixed and fixed-free wave length

Equation

>Top, >Model


En el caso de la oscilación con bordes libres y fijo o fijos y libre se tiene que el largo de onda debe ser igual a cuatro veces el largo de la cavidad L de la cavidad. Para armónicos superiores

\lambda_a = \displaystyle\frac{4 L }{2 n_a + 1}

L
Body length
m
5355
n_a
Longitudinal oscillation mode free-fixed or fixed-free case
0
-
10020
\lambda_a
Longitudinal oscillation wave length free-fixed or fixed-free case
0
m
10018
sigma = E * epsilon s = c * t c ^2 = E / rho @DIF( u , t , 2) = c ^2*@DIF( u , x , 2) z = z_0 * exp( %i *( k * s - omega * t )) %i * k * z = 0 z = 0 lambda_s = 2* L / n_s lambda_a = 4 * L /(2* n_a + 1) nu_s = n_s * c /(2* L ) nu_a = (2* n_a + 1) * c /(4 * L )Lepsilonnu_snu_an_an_slambda_alambda_srhoEEscsigmatc

ID:(14192, 0)



Free-free and fixed-fixed wave length

Equation

>Top, >Model


En el caso de la oscilación con ambos bordes libres o ambos fijos se tiene que el largo de onda debe ser un múltiplo de la mitad del largo L de la cavidad, es decir

\lambda_s = \displaystyle\frac{2 L }{ n_s }

L
Body length
m
5355
n_s
Longitudinal oscillation mode free-free or fixed-fixed case
0
-
10021
\lambda_s
Longitudinal oscillation wave length free-free or fixed-fixed case
0
m
10019
sigma = E * epsilon s = c * t c ^2 = E / rho @DIF( u , t , 2) = c ^2*@DIF( u , x , 2) z = z_0 * exp( %i *( k * s - omega * t )) %i * k * z = 0 z = 0 lambda_s = 2* L / n_s lambda_a = 4 * L /(2* n_a + 1) nu_s = n_s * c /(2* L ) nu_a = (2* n_a + 1) * c /(4 * L )Lepsilonnu_snu_an_an_slambda_alambda_srhoEEscsigmatc

ID:(14191, 0)