Breakdown Mechanism

Storyboard

When a fracture occurs, it is characterized by an area that can no longer bear load and an edge marked by tension that grows inversely to the radius of the fracture tip. This means that the section is diminished, requiring the remaining section to bear a greater load, exacerbating the situation at the fracture tip and facilitating its propagation. Thus, a catastrophic situation ensues where each increase in the fracture adds to the load to be borne, leading to further fracture growth.

>Model

ID:(2067, 0)



Mechanisms

Iframe

>Top



Code
Concept

Mechanisms

ID:(15577, 0)



Mechanics breaking

Description

>Top


ID:(742, 0)



Tensions in the Vecinity of the Break Tip

Image

>Top


The fracture propagates because its tip has an extremely small radius, which implies very high tension, as tension is proportional to the inverse of the square root of the radius.

The advancement of the fracture can be halted if, at some point, the radius increases, reducing the tension at its tip. This is achieved, for example, through material porosity or the insertion of inhomogeneities that act as stress concentration points.

None

ID:(1691, 0)



Model

Top

>Top



Calculations

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$\theta$
theta
Angle
rad
$l$
l
Break length
m
$r$
r
Disc radius
m
$F$
F
Force
N
$r_p$
r_p
Radio of the break tip
m
$\sigma_1$
sigma_1
Stress on axis $x$
Pa
$\sigma_2$
sigma_2
Stress on axis $y$
Pa

Parameters

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$K_I$
K_I
Intensity factor
$E$
E
Modulus of Elasticity
Pa
$\pi$
pi
Pi
rad


First, select the equation: to , then, select the variable: to

Calculations

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

Variable Given Calculate Target : Equation To be used


Equation

#
Equation

$ K_I =\sqrt{\displaystyle\frac{ F E }{ l }}$

K_I =sqrt( F * E / l )


$ \sigma_y =\displaystyle\frac{ K_i }{\sqrt{2 \pi r_p }}$

s_y = K_i /sqrt(2* pi * r_p )


$\sigma_x(r,\theta)=\displaystyle\frac{K_i}{\sqrt{2pi r}}\cos\displaystyle\frac{\theta}{2}\left(1-\sin\displaystyle\frac{\theta}{2}\sin\displaystyle\frac{3\theta}{2} \right)$

s_x(r,theta)=(K_i/sqrt(2 pi r))cos(theta/2)(1-sin(theta/2)sin(3theta/2))


$ \sigma_y =\displaystyle\frac{ K_i }{\sqrt{2 \pi r }}\cos\displaystyle\frac{\theta}{2}\left(1-\sin\displaystyle\frac{ \theta }{2}\sin\displaystyle\frac{3 \theta }{2}\right)$

s_y(r,theta)=(K_i/sqrt{2 pi r))cos(theta/2)(1 sin(theta/2)sin(3theta/2))

ID:(15578, 0)



Intensity Factor

Equation

>Top, >Model


The breaking stress is proportional to the intensity factor ($K_I$), which is in turn proportional to the square root of the force ($F$), the modulus of Elasticity ($E$), and the break length ($l$):

$ K_I =\sqrt{\displaystyle\frac{ F E }{ l }}$

$l$
Break length
$m$
5389
$F$
Force
$N$
4975
$K_I$
Intensity factor
$N/m^3/2$
5388
$E$
Modulus of Elasticity
$Pa$
5357

ID:(3785, 0)



Tension on the tip of the break

Equation

>Top, >Model


$\sigma_y(r_p,0)=\displaystyle\frac{K_i}{\sqrt{2\pi r_p}}$

ID:(3786, 0)



Stress parallel to the rupture

Equation

>Top, >Model


$\sigma_x(r,\theta)=\displaystyle\frac{K_i}{\sqrt{2\pi r}}\cos\displaystyle\frac{\theta}{2}\left(1-\sin\displaystyle\frac{\theta}{2}\sin\displaystyle\frac{3\theta}{2}\right)$

ID:(3788, 0)



Stress perpendicular to the Rupture

Equation

>Top, >Model


$\sigma_y(r,\theta)=\displaystyle\frac{K_i}{\sqrt{2\pi r}}\cos\displaystyle\frac{\theta}{2}\left(1+\sin\displaystyle\frac{\theta}{2}\sin\displaystyle\frac{3\theta}{2}\right)$

ID:(3787, 0)