Benützer:


Vögel

Storyboard

Vögel haben eine sehr eigenartige Art zu fliegen, die sie von den Techniken unterscheidet, die vom Menschen in ihren Flugzeugen verwendet werden. In diesem Fall erfüllen die Flügel eine doppelte Funktion, indem sie sowohl Auftrieb als auch Schub erzeugen, selbst wenn der Vogel stillsteht.

>Modell

ID:(2056, 0)



Vögel

Storyboard

Vögel haben eine sehr eigenartige Art zu fliegen, die sie von den Techniken unterscheidet, die vom Menschen in ihren Flugzeugen verwendet werden. In diesem Fall erfüllen die Flügel eine doppelte Funktion, indem sie sowohl Auftrieb als auch Schub erzeugen, selbst wenn der Vogel stillsteht.

Variablen

Symbol
Text
Variable
Wert
Einheiten
Berechnen
MKS-Wert
MKS-Einheiten
$w$
w
Flügelbreite
m
$d$
d
Flügelhöhe
m
$S_p$
S_p
Gesamtobjektprofil
m^2
$S_w$
S_w
Oberfläche, die Auftrieb erzeugt
m^2
$\gamma_w$
gamma_w
Seitenverhältnis
-
$L$
L
Spannweite der Flügel
m
$\gamma_d$
gamma_d
Verhältnis von Dicke zu Spannweite
-

Berechnungen


Zuerst die Gleichung auswählen:   zu ,  dann die Variable auswählen:   zu 

Symbol
Gleichung
Gelöst
Übersetzt

Berechnungen

Symbol
Gleichung
Gelöst
Übersetzt

 Variable   Gegeben   Berechnen   Ziel :   Gleichung   Zu verwenden



Gleichungen


Beispiele


mechanisms

Wenn Sie das Video einer Taube, die seitlich betrachtet fliegt, studieren, k nnen Sie beobachten, wie sie ihre Fl gel vor- und zur ckbewegt.

image

W hrend der Vorw rtsbewegung erzeugt der Vogel Auftrieb, w hrend er sich w hrend der R ckw rtsbewegung vorantreibt.

Wenn Sie das Video einer Taube betrachten, die aus einer frontalen Perspektive fliegt, k nnen Sie beobachten, wie sie ihre Fl gel ausbreitet und wieder zusammenzieht.

image

W hrend der Vorw rtsbewegung breitet der Vogel seine Fl gel zum ersten Mal aus, um Auftrieb zu erzeugen, w hrend er sich w hrend der R ckw rtsbewegung zum zweiten Mal ausbreitet, um sich vorw rts zu bewegen.

Um den Fl gel zu modellieren, m ssen wir die Spannweite der Flügel ($L$), die Breite der Flügelbreite ($w$) und die Flügelhöhe ($d$) des Fl gels sch tzen, um die Oberfläche, die Auftrieb erzeugt ($S_w$) und der Gesamtobjektprofil ($S_p$) berechnen zu k nnen. Ein Artikel mit Daten f r Zugv gel finden Sie in [1]:

Vogel $m$ [kg] $S_w$ [m2] $L$ [m] $\Delta$ [m]
Braunkehlchen 0,0232 0,01366 0,264 0,052
Wiesenpieper 0,0199 0,0143 0,273 0,052
Nachtigall 0,0197 0,01059 0,221 0,048
Rauchschwalbe 0,0182 0,01446 0,328 0,044
Rotkehlchen 0,0182 0,01026 0,224 0,046
Schafstelze 0,0176 0,01051 0,248 0,042
Grauschn pper 0,0153 0,01209 0,262 0,046
Hausrotschwanz 0,015 0,01006 0,200 0,050
Gartengrasm cke 0,0123 0,00779 0,200 0,039
Trauerschn pper 0,012 0,00873 0,200 0,044
Girlitz 0,0114 0,00828 0,214 0,039
Gartengrasm cke 0,0087 0,00768 0,194 0,040
Wintergoldh hnchen 0,0054 0,00504 0,146 0,035

Hinweis: In diesem Fall werden Fl gelfl chen und Spannweiten angegeben, sodass die Breite als $S_w/L$ gesch tzt werden kann. Ebenso kann die Fl gelh he aus der Profilfl che geteilt durch die Spannweite $S_p/L$ gesch tzt werden, obwohl in diesem Fall nicht ber cksichtigt wird, dass das Profil den K rperabschnitt des Vogels einschlie t.

[1] "Field Estimates of Body Drag Coefficient on the basis of dives in passerine Birds" (Feldsch tzungen des K rperwiderstandsbeiwerts auf der Grundlage von Tauchg ngen bei Singv geln), Anders Hedenstr m, Felix Liechti, The Journal of Experimental Biology, 204, 1167-1175 (2001).

Wenn wir verschiedene Fl geltypen vergleichen, f llt auf, dass Greifv gel tendenziell k rzere und breitere Fl gel haben, w hrend Zugv gel l ngere und schmalere Fl gel aufweisen. Daher ergibt es Sinn, der Seitenverhältnis ($\gamma_w$) als das Verh ltnis zwischen die Spannweite der Flügel ($L$) und der Flügelbreite ($w$) zu definieren:

image


model

Die Oberfläche, die Auftrieb erzeugt ($S_w$) kann mithilfe von die Spannweite der Flügel ($L$) und der Flügelbreite ($w$) wie folgt gesch tzt werden:

kyon

Der Gesamtobjektprofil ($S_p$) kann mithilfe von die Spannweite der Flügel ($L$) und die Flügelhöhe ($d$) wie folgt gesch tzt werden:

kyon

Der Seitenverhältnis ($\gamma_w$) wird als das Verh ltnis zwischen der Flügelbreite ($w$) und die Spannweite der Flügel ($L$) definiert, was die Proportion oder Beziehung zwischen diesen beiden Variablen angibt:

kyon

Der Seitenverhältnis ($\gamma_w$) kann als der Verhältnis von Dicke zu Spannweite ($\gamma_d$) definiert werden, was der Flügelbreite ($w$) mit die Flügelhöhe ($d$) auf folgende Weise verkn pft:

kyon

Wie die Power of flight ($P$) in Beziehung zu die Dichte ($\rho$), der Gesamtobjektprofil ($S_p$), der Widerstandskoeffizient ($C_W$), die Körpermasse ($m$), die Gravitationsbeschleunigung ($g$), die Proportionalitätskonstante Koeffizient Nachhaltigkeit ($c$), die Oberfläche, die Auftrieb erzeugt ($S_w$) und die Geschwindigkeit in Bezug auf das Medium ($v$) durch

equation=4548,

k nnen wir die Leistung in Bezug auf der Seitenverhältnis ($\gamma_w$) und der Verhältnis von Dicke zu Spannweite ($\gamma_d$) ausdr cken als

kyon.


>Modell

ID:(2056, 0)



Mechanismen

Definition


ID:(15178, 0)



Taubenflugstudie, Seitenansicht

Bild

Wenn Sie das Video einer Taube, die seitlich betrachtet fliegt, studieren, können Sie beobachten, wie sie ihre Flügel vor- und zurückbewegt.

None

Während der Vorwärtsbewegung erzeugt der Vogel Auftrieb, während er sich während der Rückwärtsbewegung vorantreibt.

ID:(1587, 0)



Taubenflugstudie, Vorderansicht

Notiz

Wenn Sie das Video einer Taube betrachten, die aus einer frontalen Perspektive fliegt, können Sie beobachten, wie sie ihre Flügel ausbreitet und wieder zusammenzieht.

None

Während der Vorwärtsbewegung breitet der Vogel seine Flügel zum ersten Mal aus, um Auftrieb zu erzeugen, während er sich während der Rückwärtsbewegung zum zweiten Mal ausbreitet, um sich vorwärts zu bewegen.

ID:(1589, 0)



Flügelform

Zitat

Um den Flügel zu modellieren, müssen wir die Spannweite der Flügel ($L$), die Breite der Flügelbreite ($w$) und die Flügelhöhe ($d$) des Flügels schätzen, um die Oberfläche, die Auftrieb erzeugt ($S_w$) und der Gesamtobjektprofil ($S_p$) berechnen zu können. Ein Artikel mit Daten für Zugvögel finden Sie in [1]:

Vogel $m$ [kg] $S_w$ [m2] $L$ [m] $\Delta$ [m]
Braunkehlchen 0,0232 0,01366 0,264 0,052
Wiesenpieper 0,0199 0,0143 0,273 0,052
Nachtigall 0,0197 0,01059 0,221 0,048
Rauchschwalbe 0,0182 0,01446 0,328 0,044
Rotkehlchen 0,0182 0,01026 0,224 0,046
Schafstelze 0,0176 0,01051 0,248 0,042
Grauschnäpper 0,0153 0,01209 0,262 0,046
Hausrotschwanz 0,015 0,01006 0,200 0,050
Gartengrasmücke 0,0123 0,00779 0,200 0,039
Trauerschnäpper 0,012 0,00873 0,200 0,044
Girlitz 0,0114 0,00828 0,214 0,039
Gartengrasmücke 0,0087 0,00768 0,194 0,040
Wintergoldhähnchen 0,0054 0,00504 0,146 0,035

Hinweis: In diesem Fall werden Flügelflächen und Spannweiten angegeben, sodass die Breite als $S_w/L$ geschätzt werden kann. Ebenso kann die Flügelhöhe aus der Profilfläche geteilt durch die Spannweite $S_p/L$ geschätzt werden, obwohl in diesem Fall nicht berücksichtigt wird, dass das Profil den Körperabschnitt des Vogels einschließt.

[1] "Field Estimates of Body Drag Coefficient on the basis of dives in passerine Birds" (Feldschätzungen des Körperwiderstandsbeiwerts auf der Grundlage von Tauchgängen bei Singvögeln), Anders Hedenström, Felix Liechti, The Journal of Experimental Biology, 204, 1167-1175 (2001).

ID:(1585, 0)



Beispiel für Flügelfaktoren

Übung

Wenn wir verschiedene Flügeltypen vergleichen, fällt auf, dass Greifvögel tendenziell kürzere und breitere Flügel haben, während Zugvögel längere und schmalere Flügel aufweisen. Daher ergibt es Sinn, der Seitenverhältnis ($\gamma_w$) als das Verhältnis zwischen die Spannweite der Flügel ($L$) und der Flügelbreite ($w$) zu definieren:

None

ID:(7043, 0)



Modell

Gleichung


ID:(15191, 0)