Vögel
Storyboard 
Vögel haben eine sehr eigenartige Art zu fliegen, die sie von den Techniken unterscheidet, die vom Menschen in ihren Flugzeugen verwendet werden. In diesem Fall erfüllen die Flügel eine doppelte Funktion, indem sie sowohl Auftrieb als auch Schub erzeugen, selbst wenn der Vogel stillsteht.
ID:(2056, 0)
Vögel
Storyboard 
Vögel haben eine sehr eigenartige Art zu fliegen, die sie von den Techniken unterscheidet, die vom Menschen in ihren Flugzeugen verwendet werden. In diesem Fall erfüllen die Flügel eine doppelte Funktion, indem sie sowohl Auftrieb als auch Schub erzeugen, selbst wenn der Vogel stillsteht.
Variablen
Berechnungen
Berechnungen
Gleichungen
Wie die Power of flight ($P$) in Beziehung zu die Dichte ($\rho$), der Gesamtobjektprofil ($S_p$), der Widerstandskoeffizient ($C_W$), die Körpermasse ($m$), die Gravitationsbeschleunigung ($g$), die Proportionalitätskonstante Koeffizient Nachhaltigkeit ($c$), die Oberfläche, die Auftrieb erzeugt ($S_w$) und die Geschwindigkeit in Bezug auf das Medium ($v$) steht durch
zusammen mit den Definitionen von die Oberfläche, die Auftrieb erzeugt ($S_w$) in Bezug auf der Flügelbreite ($w$)
und der Seitenverhältnis ($\gamma_w$)
sowie die Flugzeugkörpermasse ($m_p$) in Verbindung mit die Flügelhöhe ($d$)
und der Verhältnis von Dicke zu Spannweite ($\gamma_d$)
schlie lich, wie
Beispiele
Wenn Sie das Video einer Taube, die seitlich betrachtet fliegt, studieren, k nnen Sie beobachten, wie sie ihre Fl gel vor- und zur ckbewegt.
W hrend der Vorw rtsbewegung erzeugt der Vogel Auftrieb, w hrend er sich w hrend der R ckw rtsbewegung vorantreibt.
Wenn Sie das Video einer Taube betrachten, die aus einer frontalen Perspektive fliegt, k nnen Sie beobachten, wie sie ihre Fl gel ausbreitet und wieder zusammenzieht.
W hrend der Vorw rtsbewegung breitet der Vogel seine Fl gel zum ersten Mal aus, um Auftrieb zu erzeugen, w hrend er sich w hrend der R ckw rtsbewegung zum zweiten Mal ausbreitet, um sich vorw rts zu bewegen.
Um den Fl gel zu modellieren, m ssen wir die Spannweite der Flügel ($L$), die Breite der Flügelbreite ($w$) und die Flügelhöhe ($d$) des Fl gels sch tzen, um die Oberfläche, die Auftrieb erzeugt ($S_w$) und der Gesamtobjektprofil ($S_p$) berechnen zu k nnen. Ein Artikel mit Daten f r Zugv gel finden Sie in [1]:
| Vogel | $m$ [kg] | $S_w$ [m2] | $L$ [m] | $\Delta$ [m] |
| Braunkehlchen | 0,0232 | 0,01366 | 0,264 | 0,052 |
| Wiesenpieper | 0,0199 | 0,0143 | 0,273 | 0,052 |
| Nachtigall | 0,0197 | 0,01059 | 0,221 | 0,048 |
| Rauchschwalbe | 0,0182 | 0,01446 | 0,328 | 0,044 |
| Rotkehlchen | 0,0182 | 0,01026 | 0,224 | 0,046 |
| Schafstelze | 0,0176 | 0,01051 | 0,248 | 0,042 |
| Grauschn pper | 0,0153 | 0,01209 | 0,262 | 0,046 |
| Hausrotschwanz | 0,015 | 0,01006 | 0,200 | 0,050 |
| Gartengrasm cke | 0,0123 | 0,00779 | 0,200 | 0,039 |
| Trauerschn pper | 0,012 | 0,00873 | 0,200 | 0,044 |
| Girlitz | 0,0114 | 0,00828 | 0,214 | 0,039 |
| Gartengrasm cke | 0,0087 | 0,00768 | 0,194 | 0,040 |
| Wintergoldh hnchen | 0,0054 | 0,00504 | 0,146 | 0,035 |
Hinweis: In diesem Fall werden Fl gelfl chen und Spannweiten angegeben, sodass die Breite als $S_w/L$ gesch tzt werden kann. Ebenso kann die Fl gelh he aus der Profilfl che geteilt durch die Spannweite $S_p/L$ gesch tzt werden, obwohl in diesem Fall nicht ber cksichtigt wird, dass das Profil den K rperabschnitt des Vogels einschlie t.
[1] "Field Estimates of Body Drag Coefficient on the basis of dives in passerine Birds" (Feldsch tzungen des K rperwiderstandsbeiwerts auf der Grundlage von Tauchg ngen bei Singv geln), Anders Hedenstr m, Felix Liechti, The Journal of Experimental Biology, 204, 1167-1175 (2001).
Wenn wir verschiedene Fl geltypen vergleichen, f llt auf, dass Greifv gel tendenziell k rzere und breitere Fl gel haben, w hrend Zugv gel l ngere und schmalere Fl gel aufweisen. Daher ergibt es Sinn, der Seitenverhältnis ($\gamma_w$) als das Verh ltnis zwischen die Spannweite der Flügel ($L$) und der Flügelbreite ($w$) zu definieren:
Die Oberfläche, die Auftrieb erzeugt ($S_w$) kann mithilfe von die Spannweite der Flügel ($L$) und der Flügelbreite ($w$) wie folgt gesch tzt werden:
Der Gesamtobjektprofil ($S_p$) kann mithilfe von die Spannweite der Flügel ($L$) und die Flügelhöhe ($d$) wie folgt gesch tzt werden:
Der Seitenverhältnis ($\gamma_w$) wird als das Verh ltnis zwischen der Flügelbreite ($w$) und die Spannweite der Flügel ($L$) definiert, was die Proportion oder Beziehung zwischen diesen beiden Variablen angibt:
Der Seitenverhältnis ($\gamma_w$) kann als der Verhältnis von Dicke zu Spannweite ($\gamma_d$) definiert werden, was der Flügelbreite ($w$) mit die Flügelhöhe ($d$) auf folgende Weise verkn pft:
Wie die Power of flight ($P$) in Beziehung zu die Dichte ($\rho$), der Gesamtobjektprofil ($S_p$), der Widerstandskoeffizient ($C_W$), die Körpermasse ($m$), die Gravitationsbeschleunigung ($g$), die Proportionalitätskonstante Koeffizient Nachhaltigkeit ($c$), die Oberfläche, die Auftrieb erzeugt ($S_w$) und die Geschwindigkeit in Bezug auf das Medium ($v$) durch
k nnen wir die Leistung in Bezug auf der Seitenverhältnis ($\gamma_w$) und der Verhältnis von Dicke zu Spannweite ($\gamma_d$) ausdr cken als
ID:(2056, 0)
